

Mineral Resource Assessment for Miskin

Cardiff Plant, Miskin UK

Final Report

September 2010

www.erm.com

Robert Bosch Ltd

Mineral Resource Assessment for Miskin

September 2010

Reference: 0118282

For and on behalf of

Environmental Resources Management

Approved by: Simon Tillotson

Signed:

Position: Partner

Date: 7th September 2010

CONTENTS

1	BACKGROUND	1
2	DOCUMENT REVIEW	2
2.1	DOCUMENTATION REVIEWED	2
2.2	MINERAL POLICY DOCUMENT REVIEW	2
2.3	GEOLOGY DOCUMENT REVIEW	4
2.4	MINERAL RESOURCE DOCUMENT REVIEW	6
3	SITE INVESTIGATION FINDINGS	8
3.1	Introduction	8
3.2	Observed Geology	8
3.3	LABORATORY RESULTS	10
3.4	SAND AND GRAVEL RESOURCE QUANTITY	12
4	CONCLUSIONS	14

BACKGROUND

1

Environmental Resources Management Ltd (ERM) were commissioned by Robert Bosch Ltd (Bosch) to undertake a mineral resource assessment on part of their land at the Cardiff Plant, Miskin, UK (hereafter 'the Site') (see Figure 1).

The land in question has recently been identified as part of a potential mineral resource within the *Vale of Glamorgan* UDP for the area, specifically for aggregates composed of Sands and Gravels. The remainder of the area identified in the UDP lies to the west and south of the area in question, outside Bosch ownership and to the far side of both the Cardiff – Swansea railway (which borders the Site) and the River Ely. *Figure* 2 indicates the areas identified by the UDP proposal map both within and adjacent to the Bosch ownership.

The Site in question is due south east of the main Bosch production facility and is made up of agricultural land used for grazing purposes. A meandering stream runs through the centre of the area in a north to south direction. To the west of the stream the area is known on-site as the "South Field" and to the east and south of the stream is known as the "Back Field". The "South Field" is relatively flat in elevation around 27.5m AOD to 27m AOD, with the ground falling to the south and east to around 25.2m to 25.5m AOD on the southern and eastern edges of the area in question.

The objective of this assessment was to:

- investigate the background to the classification of this land through a
 desk-based review of documents pertaining to the policies behind the
 classification and of previous geological/mineral assessments of the
 area; and
- establish, through intrusive works, the extent to which the mineral resource exists.

The remainder of this report is arranged as follows:

- Section 2: Document Review;
- Section 3: Site Investigation Findings;
- Section 4: Conclusions.

Annexes to the report are as follows:

- *Annex A*: BGS borehole logs
- *Annex B*: ERM borehole logs; and
- *Annex C*: Laboratory certificates

2 DOCUMENT REVIEW

2.1 DOCUMENTATION REVIEWED

A desk review of the following documents was undertaken to identify the planning policies behind the land classification:

- The National Assembly of Wales. 2000. Mineral Planning Policy Wales;
- Welsh Assembly Government. 2004. Minerals Planning Policy Wales.
 Minerals Technical Advice Note (MTAN) Wales 1: Aggregates;
- Welsh Assembly Government. Sands and Gravel Supply For South East Wales – Position Statement; and
- Vale of Glamorgan. Adopted Unitary Development Plan 1996 2011.
 Chapter 9: Minerals.

In addition, a review of geology and mineral resource assessments was undertaken to establish the extent of the potential mineral resources in the local area. Documentation accessed was as follows:

- British Geological Survey, England and Wales Sheet 262, Bridgend, Solid and Drift Edition, Scale 1:50,000;
- Strahan, A. and Cantrill, T.C. 1904. The Geology of the South Wales Coal-Field, Part VI. The Country around Bridgend. Memoirs of the Geological Survey.
- Welsh Assembly Government. 2000. South Wales Sand and Gravel: Appraisal of Land-Based Extraction in South-East Wales (Symonds Group
- Thompson, A., Knapman, D. and Pethick, J. 2002. Comparative Impact Assessment of Land and Marine Sand & Gravel. Welsh Assembly Government (Symonds Group Ltd).
- British Geological Survey Logs. 1967 1976. 'ST07NE/163', 'ST07NE/166', 'ST07NE177', 'ST07NE181' and 'ST07NE184' (within the designated resource area) and 'ST07NE162', 'ST07NE171', ST07NE173', 'ST07NE174', 'ST07NE187' and 'ST07NE189' (outside the resource area).

2.2 MINERAL POLICY DOCUMENT REVIEW

2.2.1 National and Regional Mineral Policy – Welsh National Assembly

Mineral policy and planning is defined at a national, regional and local level. The national policy is detailed within *Minerals Planning Policy Wales* (December 2000), which sets out the land use policy guidance in relation to extraction of minerals and related development. In particular, it states the requirement to safeguard potential land-based resources of sands and gravels in South East Wales. The key principles of the policy are as follows:

- Provide mineral resources to meet society's needs and to safeguard those resources;
- Protect areas of importance in regards to natural or built heritage;
- Limit the environmental impact of mineral extraction;
- Achieve high standard restoration and beneficial after-use; and
- Encourage efficient and appropriate use of minerals and re-use/recycling of suitable materials.

Under *Section 14* of *Mineral Planning Policy Wales* (2000), it is suggested that policies and proposals regarding future workings of non-energy minerals should be made clear in the local unitary development plan where extraction of minerals should or most likely would take place.

Further to the *Mineral Planning Policy Wales* (2000) document, the Welsh Assembly issued a *Minerals Technical Advice Note* (2004) (*MTAN1: Aggregates*), which further emphasised the need to safeguard land-based resources as well as providing policy advice to local authorities, including *Vale of Glamorgan*. The technical note states that 'the use of marine dredged sand and gravel would probably continue for the foreseeable future but only where this remains consistent with the principles of sustainable development'. The note states 'that (although) land based extraction is not considered appropriate at the present time; those resources must be safeguarded for potential use by future generations in development plans now in view of their relatively limited regional availability'.

The *MTAN1: Aggregates* also proposed a buffer zone of 100 metres around permitted and allocated sand and gravel mineral extraction sites. The buffer zone was established to protect land uses that are most sensitive to the impact of mineral operations, including any building occupied by people on a regular basis.

2.2.2 Local Mineral Policy – Vale of Glamorgan

The *Vale of Glamorgan* sets out the local mineral policy and planning within Chapter 9 of their Unitary Development Plan (UDP), which was formally adopted in April 2005, covering a time period from 1996 to 2011. The Council is currently working on the preparation of a Local Development Plan (LDP) to cover 2011 to 2026. The objectives of the mineral policies are as follows:

- To ensure that the needs of society for minerals are satisfied with due regard to the protection of the environment;
- To encourage the best and most efficient use of all available resources and to encourage recycling and the use of secondary materials where appropriate;
- To ensure that any environmental damage or loss of amenity caused by mineral operations is kept to an acceptable level;
- To ensure that land taken for mineral operations is reclaimed at the earliest opportunity and is capable of an acceptable use after working has come to an end; and
- To prevent the unnecessary sterilisation of mineral resources.

As stated in 'Policy Mineral 1 – Mineral Exploration', explorations will be permitted unless there is unacceptable impact to landscape character, visual amenity, nature conservation, residential amenity, the Glamorgan heritage coast, surface water and groundwater resources and/or scheduled ancient monuments and historic landscapes.

Within 'Policy Mineral 3 – Protection of further limestone resources and potential resources of sand and gravel', 12 areas have been highlighted as potential sand and gravel resources. Within the Ely Valley, six areas, including land currently owned by Bosch, have been identified (see Figure 3). The policy states that these areas 'shall be protected from all forms of permanent building development in order that the workable resources may be preserved'.

Calculations of the total area of potential resources within Vale of Glamorgan were not provided in the UDP, though ERM have calculated that the designated area on Bosch land accounts for 2.7% of the total area provisionally allocated. In regards to the Ely Valley portion of this area; potential resources designated on Bosch land accounts for approximately 7% of the total area (see *Figure 3*).

It should also be noted that potential sand and gravel resource identified on Bosch land is one of two areas to the east of the River Ely Valley, with the other four areas on the western side. As such, although not at a significant distance from the other designated areas, the Bosch area is a small isolated portion of the overall area.

The policy and planning decisions behind the 12 designated resource areas, included in the Vale of Glamorgan UDP, are based on the findings of a Sand and Gravel appraisal report for the Welsh Assembly in 2000 (see *Section 2.4*).

2.3 GEOLOGY DOCUMENT REVIEW

Local mineral policy and planning, in regards to the designation of sand and gravel resources, are likely to be influenced by the interpretation of geological and geomorphological information of the area. Targeted areas would focus on superficial or 'drift' deposits resulting from past glacial, fluvio-glacial and alluvial processes. Depositional features, which could potentially yield high volumes of 'clean' sands and gravels include glacial moraines, alluvial fans and former river terraces.

The British Geological Survey Map (England and Wales Sheet 262, Bridgend, Solid and Drift Edition, Scale 1:50,000, 1989) indicates that there are no artificial deposits or 'Made Ground' underlying the site. However, site management reported slag material of up to two metre thick had been imported historically during original site development works in the late 1980s. This material had originated from Newport steelworks and was, it is understood, imported to aid the preparation of a stable development footprint for building foundations. This included deposition of slag materials across the "South field".

With regards to drift deposits, the published map shows alluvium within the River Ely valley. There are no specific obvious features that explain the extent or configuration of the resource area allocations. Indeed the alluvium area is shown to underlie much of the Bosch ownership area. Additionally, the most northerly of the designated areas is shown to be glacial till on the published map, as are parts of the area within Bosch ownership.

The underlying bedrock of the area is the Llanishen Conglomerate (a member of the Lower Old Red Sandstone), which comprises of interbedded sandstone. No fault lines were identified in the area of study.

Geological memoirs of the local area (Strahan and Cantrill, 1904) suggest that in general, sand and gravel deposits across the area range between 2m to 3m thick. This is confirmed by a small mining shaft/pit near Llanharry, approximately 5km north west of the Site. The exception, as noted in the memoir, is a substantial layer of sands and gravels near Pontyclun, approximately 3km north west of the Site, of up to 19.5m thickness. The origins of the gravels are termed 'doubtful' and considered to be a mixture of glacial deposits and alluvium.

In addition to these references, 11 borehole logs were obtained from the British Geological Society (BGS) 'Georecords' online system, which were recorded as been advanced between 1967 and 1976, within the area currently allocated by the draft Plan within the Bosch property area. The location of these boreholes is shown on *Figure 2* and the logs are reproduced in *Annex A*. These boreholes were part of a larger number (28 in total) that were advanced in an area between the current southern edge of the production facility and the current location of the sewage works to the south east. The presence of geotechnical testing data on the logs could suggest that these boreholes were part of exploratory geotechnical works associated with the sewage works, preconstruction.

Five BGS boreholes were obtained from within the designated resource area on Bosch land. To the south and east of the stream, the borehole records suggest thin layers of sands and gravels between 1.3m and 2.4m thick. The sand and gravel deposits were recorded as been underlain by sandy silt and then a very sandy clay. To the north and west, in the 'South field' the borehole logs record sandy silty gravel between 0.79m and 2.1m thick, underlain by extensive layers of silty sand and/or sandy clay with boulders. Based on these logs there is no evidence of sand and gravel deposits greater than 2.4m thick.

To establish the nature and extent of sand and gravel on Bosch land beyond the resource area, six additional borehole logs were obtained from the BGS, within 50 metres of the designated boundary. The thickest sand and gravel units $(3.0-3.35 \, \text{metres})$ were recorded south west of the resource area, nearer the Ely River. In other boreholes to the north, south and east of the resource area, a general thinning out of sand and gravel away from the Ely River is evident, with no sand and gravel recorded in the most eastern borehole log

(ST07NE171) (See *Figure* 2 for borehole locations and *Annex* A for borehole logs). Moreover, when comparing sand and gravel thickness between the resource area and adjacent Bosch land, there would seem to be no discernable difference in the underlying drift deposits and therefore no evidence of a definitive sand and gravel resource.

2.4 MINERAL RESOURCE DOCUMENT REVIEW

ERM reviewed a study conducted for *National Assembly for Wales* in 2000 which assessed potential land-based resources of sand and gravel in South East Wales entitled 'South Wales Sand and Gravel: Appraisal of Land-Based Extraction in South East Wales, National Assembly for Wales'. The report used geomorphological mapping and reviewed existing borehole data to identify a series of potential resources, including the Ely Valley region of Vale of Glamorgan. The report suggested that for a single deposit to be deemed economically viable, the following characteristics need to apply:

- 'Mineral' should be defined as relatively 'clean' sand and gravel, containing less than 15% silt and clay;
- the average thickness of mineral should be no less than one metre;
- the maximum ratio of overburden to mineral should be no more than 1.5 to 1; and
- the minimum quantity of extractable mineral should be approximately 0.5 million tonnes.

To calculate the potential tonnage of mineral and overburden within an individual resource, the report used a figure of 1.6 tonnes per cubic metre as the in-situ bulk density (as a minimum estimate).

The report identifies six individual sand and gravel resources within the Ely Valley region of Vale of Glamorgan, including the area on Bosch-owned land, covered in this study. It is therefore, assumed that the designated resource areas, as outlined in the Vale of Glamorgan UDP, are based on the geomorphological interpretations of the Welsh Assembly report. Moreover, within the conclusions of the report, the following statement is made:

"It is emphasised, however, that more detailed investigation and testing of individual resources is needed before these (potential resources) can be relied upon as an alternative to the existing supply regime".

A follow on study conducted in 2002 entitled 'Comparative Impact Assessment of Land and Marine Sand & Gravel, Welsh Assembly Government' was reviewed and reference to the 2000 findings were reported within. In summary, the report concludes that within the context of sustainability, marine-dredged resources of sand and gravel (which currently supply all sand and gravel resources for South East Wales) should be phased out over a period of time, with a future emphasis on areas further offshore. The report also suggested that future land-based sand and gravel resources (including those within Vale of Glamorgan) should also be considered.

The mineral resource document estimates that the total quantity of potential land-based sand and gravel resource in South East Wales is 393 million tonnes, including those areas affected by known environmental or planning constraints. This estimate is further referenced in the Monmouth UDP Mineral Policy section (Chapter 15), where an estimated 40% of sand and gravel resources (approximately 157 million tonnes) is based. For this report, ERM were unable to attain an estimate for the Vale of Glamorgan.

This report, through a detailed investigation of the individual resource on Bosch-owned land, will assess whether the area can be considered to be economically viable, based on the original criteria used in the Welsh Assembly report.

SITE INVESTIGATION FINDINGS

3.1 Introduction

3

Following the document review, ERM conducted an intrusive site investigation between 30th June and 5th July 2010, consisting of the advancement of seven boreholes across the area of the potential mineral resource area, as identified in the Local Development Plan (LDP) (see *Figure* 2). Boreholes BH1-4 and BH7 were advanced within the "South Field" and BH5 and BH 6 within the "Back Field" to the east of the stream.

Each borehole was advanced up to 10 metres below ground level (m bgl) to confirm the near surface geology and in particular the presence, nature and thickness of Sand and Gravel deposits. The borehole logs are reproduced in *Annex B*.

At each location, up to five bulk samples were collected of the Sands and Gravels where possible, or of the surrounding geology depending on the nature of the geology encountered. The bulk samples were submitted to the laboratory (Geolab) and scheduled for analysis of Particle Size Distribution (PSD) (see *Table3a* for results) and bulk density (see *Table 3b* for results). The laboratory certificates are reproduced in *Annex C*.

All boreholes were backfilled and sealed to ground level with bentonitecement grout.

3.2 OBSERVED GEOLOGY

Figures 4a and *Figure 4b* reproduce cross-sections through the upper 10m of the groundmass profile within the area of interest.

Made ground deposits were only encountered in BH1, BH2 and BH3, all located to the west of the stream and in the northern half of the area in question. At BH1, the northernmost borehole (and closest location to the production facility) the made ground was up to 1.9m thick, composed of a slag material, confirmed to have been imported from steelworks in Newport by Site Management.

This slag material thinned slightly to the west and south to 1.1m in BH2 and 1.8m in BH3 and was absent in BH7 to the south. At BH4 adjacent to the stream and in all the remaining borehole locations to the west of the stream within the "Back Field" the made ground was also absent. The absence of made ground in the borehole log for ST07NE184 (adjacent to BH2) is because this borehole predated the importation of the slag in the late 1980s.

Underlying the Made Ground in the northern area of the site and topsoil in other areas were alluvial deposits composed of sandy/silty clay or clayey silt with occasional gravels. This unit was typically 2m to 2.3m thick in the central area of the site, thinning to the south and east to around 1.5m thick. The deposits thickened towards BH3 and BH2 in the north western area of the site to a maximum of 2.9m at BH2. At BH1 in the northernmost part of the area however the deposits were only 0.5m thick.

As the general ground elevation is similar in the northern area of the site (west of the stream), the presence of such a relatively thin deposit at BH1 compared to other boreholes in this area (BH2 and BH3) is likely to be as a result of the presence of thicker deposits of made ground (1.9m) at this location. This also suggests a general levelling of the "South Field" area to create a development platform. Thus overburden (made ground and drift) above the sand and gravel resource varies between 1.3 and 4m. The BGS logs pre-date the reported importation of made ground and thus underestimate the total amount of overburden material.

Sands and Gravels underlie the natural clays and silts at all borehole locations. The Sands and Gravels are at their thickest at BH1 in the far north of the potential mineral resource area (PMRA) where the deposit is 5.7m thick but this includes two 0.3m and 0.4m thick intervening clay horizons in the lower part (with actual total sand and gravel thickness of 5m, but with main uninterrupted upper sand and gravel horizon of 3.3m). To the south of this location at BH2 and BH3, the sand and gravels thin to around 1.1m although the PSD analysis (see below) suggests a high gravel content to the underlying clayey gravel. The unit thickens to around 2m south and west of the stream. BH7 in the south of the PMRA records 3m of sand and gravel but with the exception of this and BH1, the majority of boreholes across the MPRA record a deposit between 1-2m thick.

The Sands and Gravels are underlain by a clayey gravel or gravelly clay in the northern/western part of the Site (BH1 and BH2) or by sandy/clayey silt across the remainder of the site. The silt layer can be as shallow as 3.5m bgl (BH5) and continues to the end of the borehole (up to 10.1m bgl).

Water strikes were generally recorded at the top or within the upper part of the Sand and Gravel deposit, with evidence from the BGS boreholes that rest water level was generally elevated above the top of the sand and gravel i.e. the water was confined by the overlying silts and clays. It is likely that water within the sand and gravel is in hydraulic continuity with the local stream and potentially the River Ely to the south-west, although the influence of drainage associated with the railway line on the flow regime is not known.

3.3 LABORATORY RESULTS

3.3.1 Particle Size Distribution (PSD)

The samples for PSD analysis were largely obtained from soils identified in the field as representing the Sands and Gravels unit. The results are shown in *Table 3a*.

Table 3a Particle Size Distribution Analysis

Borehole Soil Fractions (%))	I D : ::
Location/Sample	Cobbles	Gravel	Sand	Silt & Clay	Log Description
BH1 (2.5-2.7m)	0	47	36	17	Sands and Gravels
BH1 (3.0-3.3m)	0	66	23	11	Sands and Gravels
BH1 (3.5-4.0m)	0	60	29	11	Sands and Gravels
BH1 (4.1-4.6m)	0	69	27	4	Sands and Gravels
BH1 (4.8-5.1m)	0	43	54	3	Gravelly Sand
BH2 (4.0-4.5m)	0	85	11	4	Sandy Gravels
BH2 (4.5-5.0m)	0	51	23	26	Clayey Gravels
BH2 (5.0-6.0m)	0	72	19	9	Clayey Gravels/Gravelly
					Clay
BH2 (6.0-7.0m)	0	75	14	11	Gravelly Clay
BH2 (8.0-9.0m)	14	55	13	18	Gravelly Clay
BH3 (2.6-3.0m)	0	58	32	10	Sandy, Gravelly Silt
BH3 (3.0-4.0m)	10	43	38	9	Sandy, Gravelly Silt
BH3 (4.0-4.5m)	0	86	12	2	Sandy Gravels
BH3 (4.5-5.0m)	0	77	22	1	Sandy Gravels
BH3 (5.0-6.0m)	0	25	59	16	Gravelly Sand/Silt
BH4 (1.5-1.9m)	0	64	26	10	Gravelly Silty Sand
BH4 (1.9-2.3m)	0	93	6	1	Slightly Sandy Gravel
BH4 (2.5-3.0m)	0	71	26	3	Gravelly Sand
BH4 (3.5-4.0m)	0	35	56	9	Gravelly Sand
BH4 (4.5-4.9m)	0	5	87	8	Silty Sand
BH5 (1.8-2.4m)	0	58	29	13	Clayey Gravel
BH5 (2.4-2.7m)	0	81	17	2	Sandy Gravel
BH5 (2.7-3.0m)	0	85	14	1	Sandy Gravel
BH5 (3.1-3.5m)	0	72	26	2	Gravelly Sand
BH5 (3.5-3.8m)	0	15	21	64	Sandy Silt
BH6 (1.5-2.0m)	0	50	37	13	Clayey Gravelly Sand
BH6 (2.0-2.5m)	0	46	40	14	Clayey Gravelly Sand
BH6 (2.5-3.0m)	0	86	12	2	Sands and Gravels
BH6 (3.0-3.5m)	0	92	7	1	Sands and Gravels
BH7 (3.5-4.0m)	0	57	30	13	Sandy Clayey Gravels
BH7 (4.0-4.5m)	0	80	17	3	Sandy Gravel
BH7 (4.5-5.0m)	0	89	10	1	Sandy Gravel/Gravelly Sand
BH7 (5.0-5.5m)	0	93	6	1	Sandy Gravel
BH7 (6.0-7.0m)	0	25	57	18	Sandy Gravel/Sandy Silt

The majority of samples taken from the sand and gravel unit are characterised by a high percentage of gravels (typically 60-80%), followed by sands, with very low percentages of silt and clay. The PSD results confirm that in the northern/western region of the Site (BH1 and BH2), gravel content is generally identified at lower depths than in the southern region of the Site.

At all borehole locations, with the exception of BH6, there is a significant decline in gravels between the penultimate sample and the lowest sample collected. The gravels tend to be replaced by an increase in sand and silts and clays, suggesting a fining down of sediments; confirming the base of the Sands and Gravels unit.

The BGS logs reported an extensive layer of sandy silt underlying the Sands and Gravels. A representative sample of this sandy silt layer, underlying the Sands and Gravels, was collected at BH5 (3.5m - 3.8m bgl). The sample showed a high percentage of silt and clay (64%) followed by lower percentages of sand (15%) and gravel (21%).

3.3.2 Bulk Density

The bulk density of a soil is determined by the mass of the materials which make up the soil and the volume the mass occupies. Density is highly dependant on the content of minerals within a soil as well as the compaction of the material. Soils are naturally loosened during drilling and field extraction of samples, and are re-compacted and oven dried in the laboratory to give bulk and dry density. Bulk density is used for geotechnical studies, especially in regards to the stability of building foundations and to assess the nature of potential aggregates.

For the purpose of this report, density analysis was conducted to confirm the presence and extent of the Sand and Gravel unit, and to provide quantity estimates. The results of bulk density analysis are shown in *Table 3b*.

Table 3b Bulk Density Analysis

Borehole	Moisture Content (%)	Bulk Density (Mg/m³)	Dry Density (Mg/m³)
Location/Sample			
BH1 (2.5-2.7m)	15	2.36	2.06
BH1 (3.0-3.3m)	10	2.44	2.21
BH1 (3.5-4.0m)	10	2.38	2.16
BH1 (4.1-4.6m)	8	2.4	2.28
BH1 (4.8-5.1m)	18	2.37	2
BH2 (4.0-4.5m)	5	2.54	2.43
BH2 (4.5-5.0m)	12	2.38	2.13
BH2 (5.0-6.0m)	10	2.49	2.25
BH2 (6.0-7.0m)	9	2.55	2.35
BH2 (8.0-9.0m)	13	2.41	2.14
BH3 (2.6-3.0m)	10	2.46	2.24
BH3 (3.0-4.0m)	10	2.44	2.21
BH3 (4.0-4.5m)	5	2.24	2.12
BH3 (4.5-5.0m)	10	2.25	2.05
BH3 (5.0-6.0m)	25	2.15	1.72
BH4 (1.5-1.9m)	11	2.24	2.02
BH4 (1.9-2.3m)	5	2.2	2.09
BH4 (2.5-3.0m)	8	2.35	2.17
BH4 (3.5-4.0m)	12	2.42	2.16
BH4 (4.5-4.9m)	24	2.31	1.86
BH5 (1.8-2.4m)	8	2.48	2.31
BH5 (2.4-2.7m)	9	2.13	1.96

Borehole Location/Sample	Moisture Content (%)	Bulk Density (Mg/m³)	Dry Density (Mg/m³)
BH5 (2.7-3.0m)	6	2.23	2.11
BH5 (3.1-3.5m)	3	2.27	2.19
BH5 (3.5-3.8m)	12	2.2	1.97
BH6 (1.5-2.0m)	12	2.42	2.15
BH6 (2.0-2.5m)	11	2.45	2.21
BH6 (2.5-3.0m)	5	2.24	2.14
BH6 (3.0-3.5m)	5	2.22	2.12
BH7 (3.5-4.0m)	12	2.45	2.2
BH7 (4.0-4.5m)	5	2.16	2.06
BH7 (4.5-5.0m)	6	2.3	2.17
BH7 (5.0-5.5m)	5	2.2	2.09
BH7 (6.0-7.0m)	17	2.33	1.99

The bulk density analysis suggests that the Sands and Gravels are relatively consistent throughout the Site, ranging from $2.13 \, \text{Mg/m}^3$ at BH5 ($2.4 - 2.7 \, \text{m}$ bgl) to $2.55 \, \text{Mg/m}^3$ at BH2 ($6.0 - 7.0 \, \text{m}$ bgl). The bulk density, when compared to the dry density values is seen as consistent throughout the unit, with a range of $1.86 \, \text{Mg/m}^3$ at BH4 ($4.5 - 4.9 \, \text{m}$ bgl) to $2.43 \, \text{Mg/m}^3$ at BH2 ($6.0 - 7.0 \, \text{m}$ bgl).

Moisture content ranged from 3% at BH5 (3.1-3.5m) to 25% at BH3 (5.0 - 6.0m).

3.4 SAND AND GRAVEL RESOURCE QUANTITY

Based on the thickness of sands and gravels recorded in the historic BGS referenced borehole logs and the borings advanced by ERM, ERM have used a visualisation software package, EVS, to provide a volumetric estimate of the sand and gravels present. An oblique 3D plot of the area is reproduced in *Figure 5*, showing the relative thickness of the sand and gravel deposits in the area of study.

Our estimate is 127,010m³. Using the average dry density from samples obtained (2.215 Mg/m³) (see *Table 3b*), ERM estimate that this equates to 281,327 tonnes of sand and gravel within the resource. However, this laboratory dry density is calculated based on the re-compaction of the material, to perform the tests, and is not considered to be a 'true field' density value. A standard density for Sand and Gravel (used for foundation design and construction) provides an estimated capacity of 228,618 tonnes. When using the bulk density of 1.6 Mg/m³ (as utilised in the Welsh Assembly 2000 report, see *Section 2.4*), this provides a lower estimated capacity of 203,216 tonnes.

To put the tonnage estimated to be present in context, the amount present on Bosch owned land would represent some 0.06% of the 393 million tonnes of land-based sand and gravel deposits that are estimated to be present in South East Wales.

The overburden material (those materials overlying the sand and gravels has an estimated volume of 283,850m³. This would mean more than twice the

amount of material would have to be removed from the site before extraction of the resource.

Although we have no estimate available of the volume that is considered by the Vale of Glamorgan to be within their authority area, as noted above, the mineral resource on Bosch-owned land would contribute approximately 2.7% of spatial coverage to Vale of Glamorgan designated sand and gravel resource (and 7% in the Ely Valley) (see *Figure 3*), and therefore again, is likely to be a small proportion of any resource present.

4 CONCLUSIONS

Environmental Resources Management Ltd (ERM) were commissioned by Robert Bosch Ltd (Bosch) to undertake a mineral resource assessment of a part of land at the Cardiff Plant, Miskin, UK. The objective of this assessment was to identify the background to the classification of this land, and establish the extent to which the mineral resource exists through policy review and an intrusive site investigation.

The national and regional mineral policy documents emphasise the need to safeguard potential future resources of land-based aggregates, in particular Sands and Gravels. Current excavation of Sands and Gravels are entirely marine-dredged based although it is recommended in reports commissioned by the *Welsh Assembly Government* that consideration should be given to land-based (as well as offshore) resources, although the exploitation of any such resources should be mindful of impacts to the environment and the sustainability of such operations.

As part of the mineral policy, there is a requirement for the local authorities of South East Wales to identify potential mineral resources. Within the *Vale of Glamorgan* UDP (1996 – 2011), potential resources have been identified, including land in the Ely Valley region and in particular, an area within Bosch owned land.

ERM undertook a review of other relevant documents including geological maps of the region, geological memoirs and mineral assessments (on behalf of the Welsh National Assembly) for the South East region. It is clear from this initial desk review, that the designation of the mineral resource area on-site was based on the alluvium deposits in the region. In regards to geology, the maps identify a mixture of alluvium or glacial till (boulder clay) across most of the Bosch ownership area and both north and south of the areas allocated outside the ownership. Geological logs obtained from the BGS for previous exploratory borings across the area of interest indicated sand and gravel deposits less than 2.4m thick within the resource area, and up to 3.35m thick on adjacent land, nearer the Ely River.

An intrusive site investigation including the advancement of seven boreholes up to 10m bgl was performed between 30th June and 5th July, to record the extent of sand and gravels onsite. The sand and gravels unit was observed to be limited to a maximum thickness of 4.5 metres in the northern/western parts of the area, with a general decline in thickness towards the southern/eastern region of the area to between 1.1m and 2m thickness. The deposits are underlain by clayey gravel in the northern part of the area and by an extensive layer of sandy silt to the south.

Particle Size Distribution and Bulk Density analysis confirmed the existence and extent of the Sand and Gravel unit, which suggests a gravel dominant

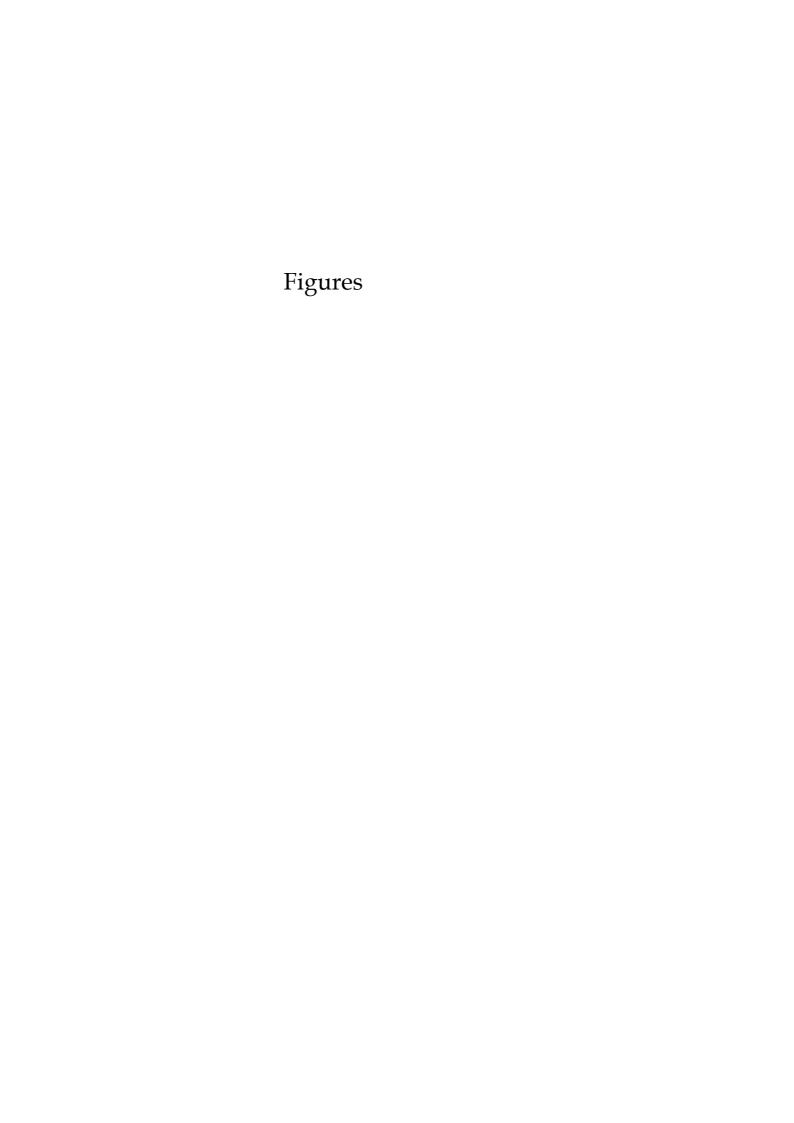
unit with minor sand element. The majority of sand and gravel collected within the resource area can be defined as 'clean' minerals (see *Section 2.4*), due to the low percentage of silt and clay, which generally make up less than 15% per sample.

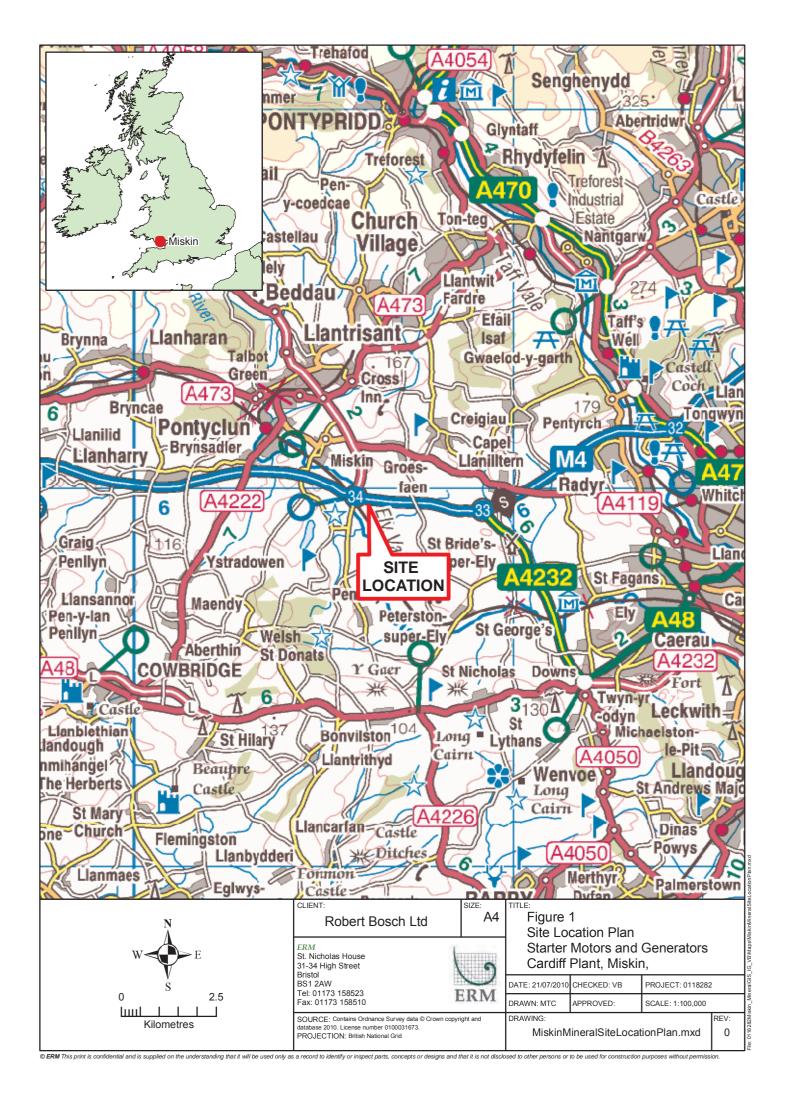
Based on calculations of the volume of the sand and gravel deposits and the average/standard density, it is estimated that the capacity of the resource would range between 203,216 and 281,327 tonnes. This estimated capacity is considerably lower than the minimum quantity of 0.5 million tonnes, as quoted in the Welsh Assembly 2000 report. Furthermore, with an overburden ratio of >2:1, this individual resource would not have 'passed' the search criteria of the 2000 report (See *Section 2.4*), which the Vale of Glamorgan has potentially used as its basis for designation. For a regional perspective, the resource area equates to a very small (0.06%) proportion of the total estimated quantity for South East Wales.

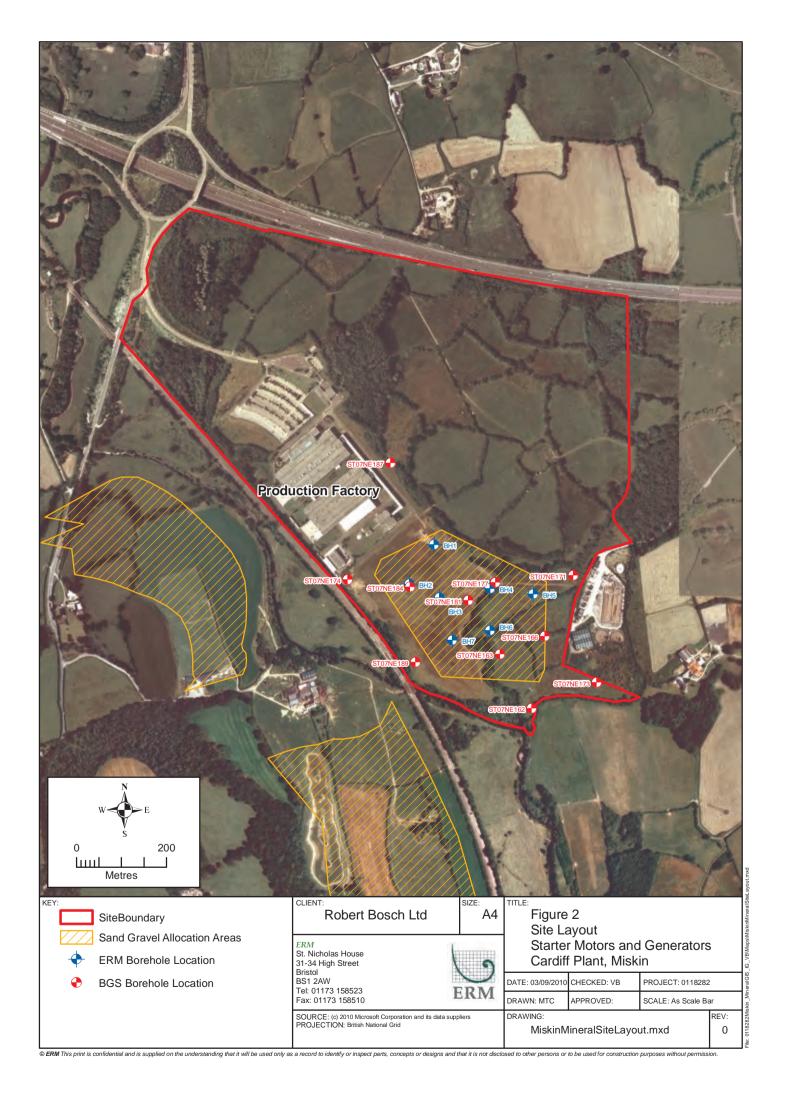
Although we have no estimate available of the volume that is considered by the Vale of Glamorgan to be within their authority area, the mineral resource on Bosch-owned land would contribute approximately 2.7% of spatial coverage to Vale of Glamorgan designated sand and gravel resource (and 7% in the Ely Valley) and as such, on a local scale, would again be a small proportion of any resource present.

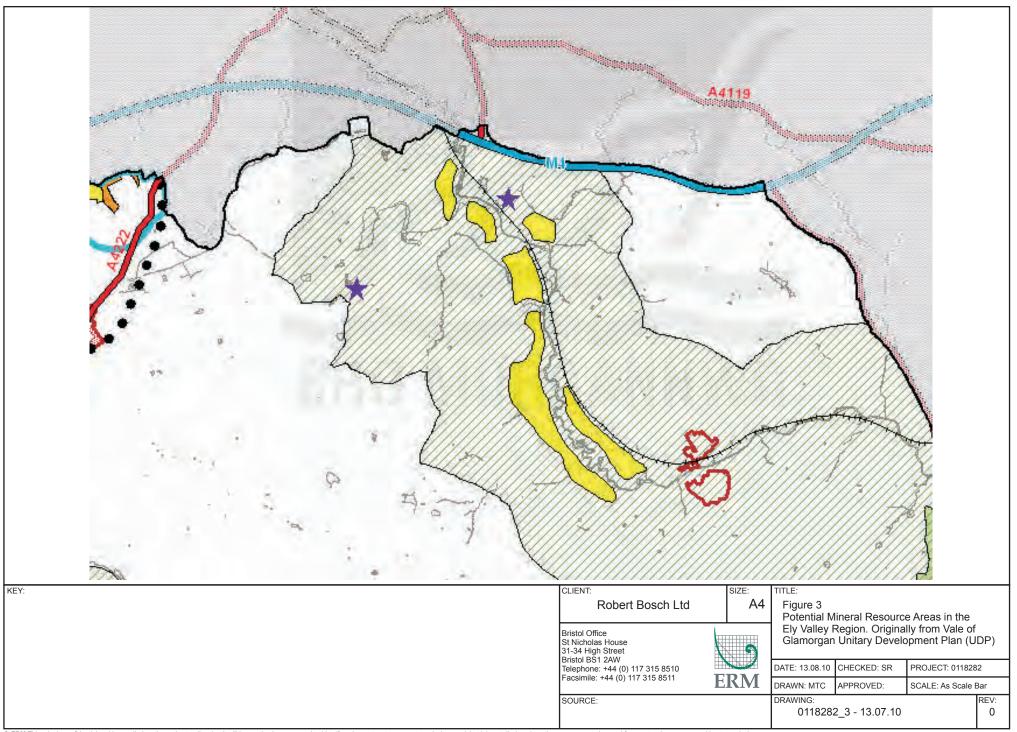
Additionally the potential sand and gravel resource, identified on Bosch land, is constrained by:

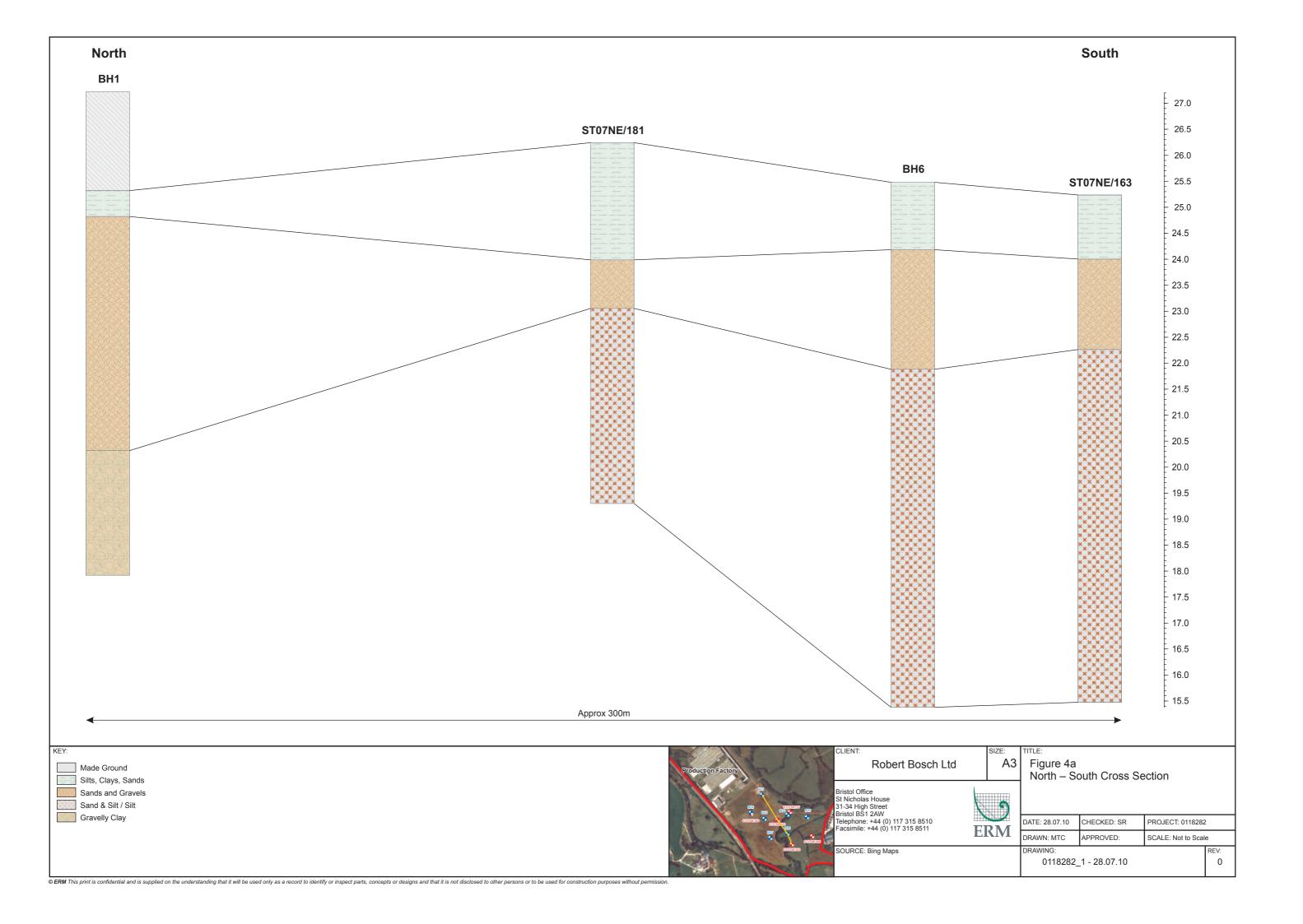
- the railway line and river to the south-west, with no direct link to other potential areas within the Ely Valley; and
- a high, confined water table which is likely connected with the nearby river, resulting in any future extraction requiring the unit to undergo 'wet working' in an attempt to reduce impact on the local hydrological system.

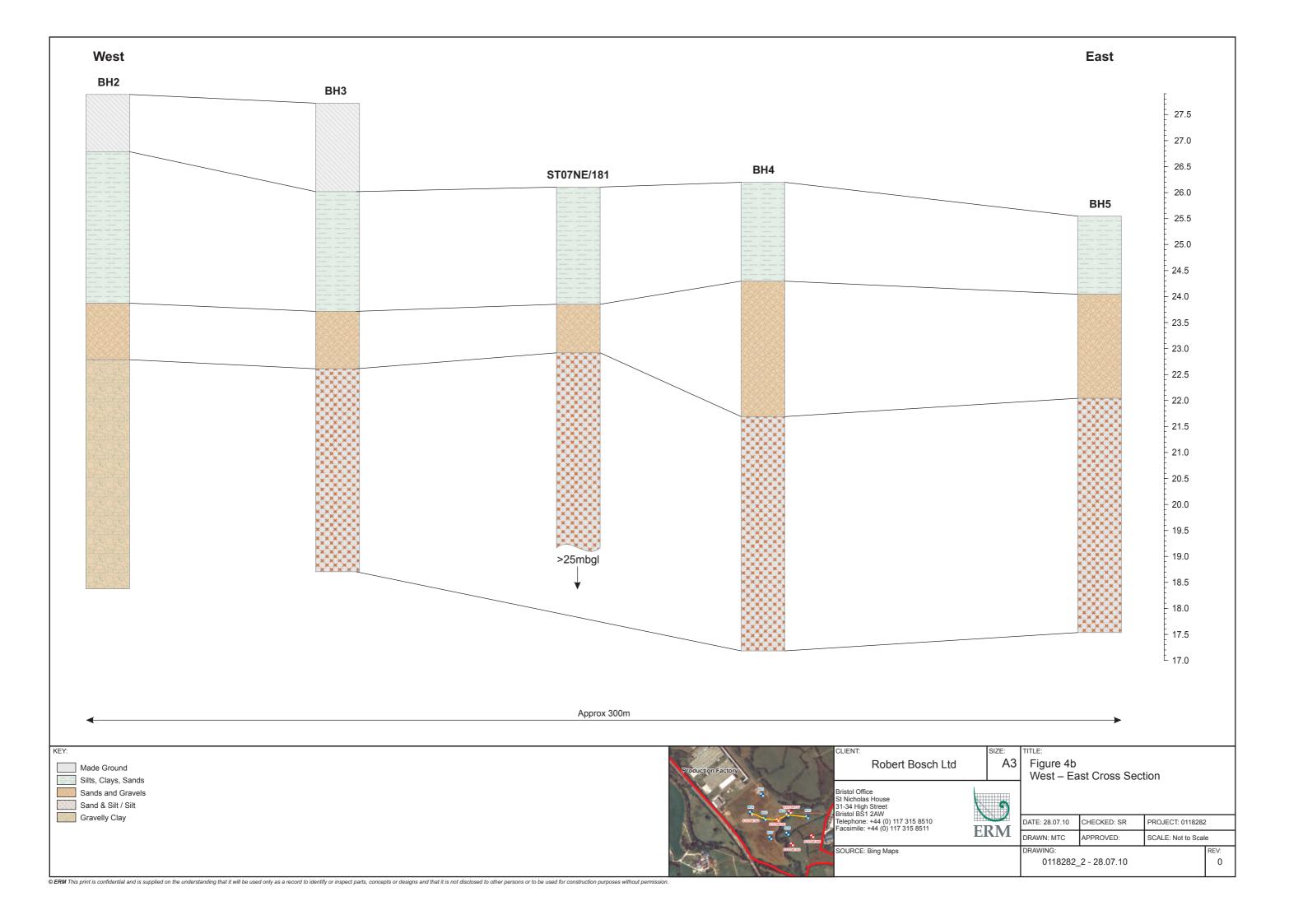

In addition, the potential resource is located within an area already designated for employment use in the adopted UDP (see *Figure 6*). As such, it would be a major constraint to delivery of what could potentially become a major employment opportunity regionally as employment-based buildings would not be permitted within 100 metres of the resource area, as detailed in *paragraph 70* of the *MTAN1: Aggregates* (see *Section 2.2.1*).

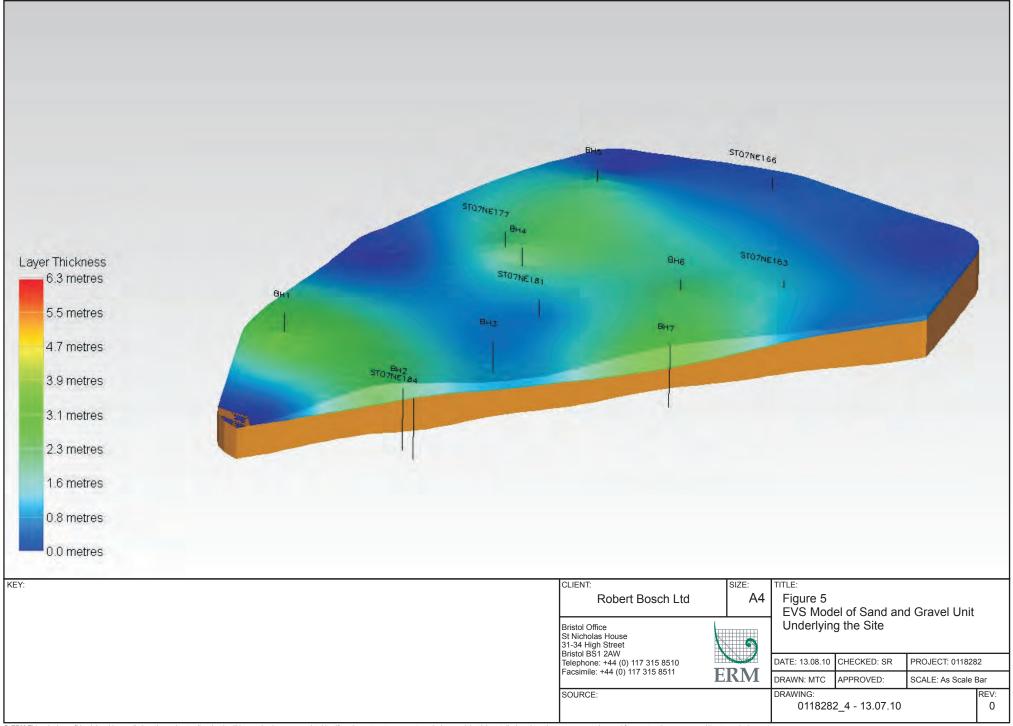

Additionally the current southernmost facility unit on the site is within 100m of the northern edge of the resource area, suggesting that the overall extraction area would be limited by the proximity of the existing buildings.

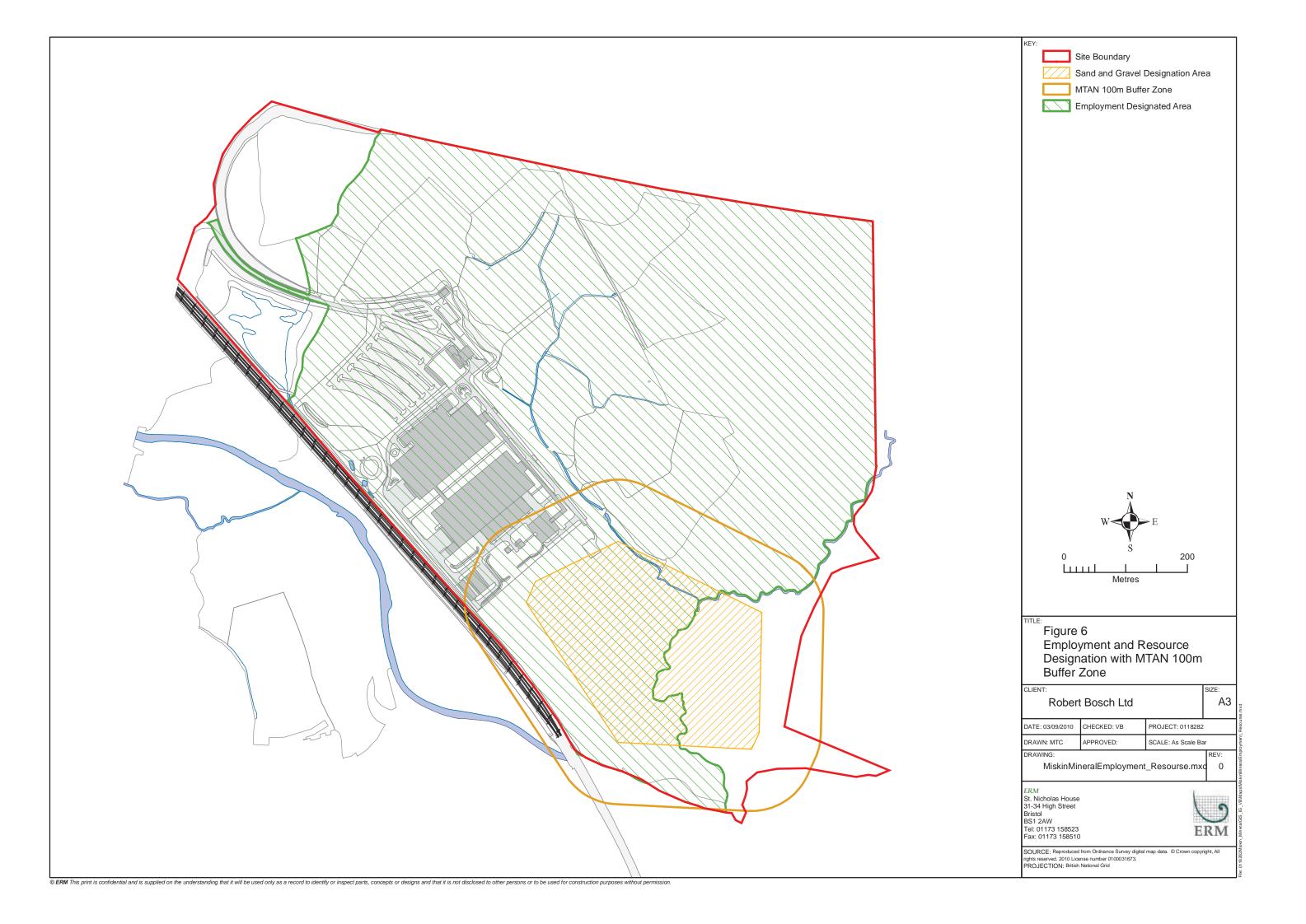

In theory the aggregate might be extracted prior to construction of any subsequent development (or even used in that construction) but the distance restrictions from existing buildings, the presence of the overlying materials


and the isolated location of the resource would further question the economic viability of the resource.


In addition, whilst consideration of ecology and nature conservation matters falls outside of the scope of ERM's brief, subject to the findings of ongoing ecology work separately commissioned by Bosch, the proximity of the resource to the Ely Valley SSSI would appear to present a further significant constraint.







Annex A

BGS Borehole Logs

ST07 NE/163 (1"262)

2

Holst Soil Engineering Limited

BORFHOIF IOG

	CT 2003/E 2/26	DUNCTULE	LUG	0660 7887,	
Contract No	SI.2903/F.3426 Gwern-Y-Gedrych				1
Location	Gwern-Y-Gedrych	•		Sheet of	1
Eocation	South Clamaraan				1
	South Glamorgan			Chainage	
Method of Bor	ing Percussion			Chainage	17m AOD

ClientSouth Glamorgan Mothod of Boring. Percussion 0.20m Diameter of Borehole	· ·							.17m A	
Description of Strata	Legand	Depth Below G.L.(m)	Thickness of Strats(m)	Type of Sample	c KN/sq.m	Ø deg	m.c. %	Y Kg/cu.m	N
TOPSOIL		0.20	0.20						
Firm grey brown clayey stony SAND		1.00	0.80	0.50	28	26	9.8	2230	
Brown medium dense sandy coarse GRAVEL				1.50					20
Medium dense grey fine sandy SILT		2.30	1.30	2,50					
The same state gray against state of the same st	* * * * * * * * * * * * * * * * * * *								12
	* * * * * * * * * * * * * * * * * * *	,							
	* * * * * * * * * * * * * * * * * * *			4.50					
· ·	X X X X X X X X X X X X X X X X X X X			I					19
,	X X X X X X X X X X X X X X X X X X X			6.00					
	* * * * * * * * * * * * * * * * * * *								10
·	* * * * * * * * * * * * * * * * * * *								
•	* * * * * * * * * * * * * * * * * * *			7.50 T					9
•	x x x x x x x x x x x x x x x x x x x			<u></u>					
- ·	X X X X X X X X X X X X X X X X X X X			9 <u>.</u> 00				,	11
		10.00	7 70						11
Key	Remarks			<u> </u>			<u>, </u>		

O Disturbed Sample

△ Water Sample

I Penetration Test

[] Undisturbed Sample Ø Angle of Friction m.c.Moisture Content

y Bulk Density N S.P.T. Value

c Apparent Cohesion

Water struck at 1.90m

After 20 mins rose to 1.70m

Final standing level 0.80m

Water levels are subject to seasonal or tidal variations and should not be taken as constant

STOTNE/163

Holst Soil Engineering Limited

Contract No.SI. 2903/F. 3426	
Location Gwern-Y-Gedrych	Sheet of 2
OllentSouth Glamorgan	Chainage
Method of Boring Percussion	Ground Level 25,17m AOD
Diameter of Borehola	Date 1.4,6 76

Diameter of Borehole									
Description of Strata	Legend	Dopth Below G.L.(m)	Thickness of Strata(m)	of	c KN/sq.m	Ø dog	m.c. %	y Kg/cu.m	N
Medium dense grey fine sandy SILT	X X X X X X X X X X X X X X X X X X X			10.50					15
·	x x x x x x x x x x x x x x x x x x x			12.00					15
Soft grey brown laminated CLAY with bands of silt	× × × × × × × × × × × × × × × × × × ×	13.20		13.50	No red	0 V 6	ry 25.9	1910	
Stiff dark brown very sandy very stony CLAY		16.50		16,00	89	6	10.5	2320	
Key Undisturbed Sample Ø Angle of Friction O Disturbed Sample m.c.Moisture Content A Water Sample y Bulk Density I Penetration Test N S.P.T. Value c Apparent Cohesion			vations o					bo taken as	constant

STO7 NE /166 (1"262) Moist Soil Engineering Limited BOREHOLE LOG Contract No. . SI. 2903/F. 3426 Location.....Gwern-Y-Gedrych..... Sheet ... 1. of 1...... Client......South Glamorgan Chainage Method of Boring Percussion Diameter of Borehole ... 0.20m Thickness Depth Type Description of Strata Below G.L.(m) Legend Y Kg/cu.m Strata(m) KN/sq.m deg Sample TOPSOIL 0.20 0.20 Stiff light grey brown mottled very sandy CLAY with occasional stones 0.80 76 20.4 2000 1.30 1.10 Grey brown SAND and GRAVEL 1.50 55 34 19.9 2280 2.00 0.70 Medium dense grey brown medium/ coarse grained sandy GRAVEL 2<u>.</u>80 29 3.70 1.70 Loose/medium dense grey fine sandy 4.00 SILT 5.50 10 6.40 2.70 6.50 173 8 12.0 2310 Stiff grey brown very sandy CLAY with stones and occasional bands of sand from 7.50m 126 0 10.5 2390 8.30 1.90

Key

O Disturbed Sample

△ Water Sample I Penetration Test

☐ Undisturbed Sample Ø Angle of Friction m.c.Moisture Content

y Bulk Density N S.P.T. Value

c Apparent Cohesion

Remarks (Observations of Ground Water etc.)

Water struck at 1.80m After 20 mins rose to 0.90m Sealed off at 6.50m Final standing level 1.20m

Water levels are subject to seasonal or tidal variations and should not be taken as constant

ST07NE/173

Holst Soil Engineering Limited BOREHOLE LOG 0690

Borehole No.

12

BOR	EHOLE	LOG	0690 7884
Contract-No SI. 2903/F 3426			
Location Gwern-Y-Gedrych			Sheet
ClientSouth Glamorgan			Chainage
Client South Glamorgan Method of Boring Percussion			Ground Level .2711m AOD
Diameter of Borehole			Date 8.6.76

	0.30 1.70 2.40 3.00	1.40 0.60	1.00	65 40	0	18.7	2180	
	1.70	1.40 0.70	1.90	40				
	2.40_	0.70	1.90	40				
	2.40_	0.70	1.90	40				
	2.40_	0.70		40				
	2.40_	0.70		40				
	2.40_	0.70			10	14.8	2225	
	2.40_	0.70			10	14.8	2225	
					10	14.8	2225	
			2.80					
0 10			2.80			1		
	3.00	0.60	2.80			1	ļ	
8 - 3	3.00	0.60						
				No red	COVE	ery		
	1							
	1			1				
							-	
				j .				
								1
		ļ		:				
1 ,								
\Psi	6.20	3.20						1
50.00			6.40					
1	4			193	17	9.3	2320	
\$1.5	1					1		
	1							
<u> </u>	.1					ļ		1
<u> </u>	7,60	1.40						
	}		8 20					
	.]		10.20 T					44
								` `
		1 20	1					1
DOOU	0.90	1.30						
	5							1
KARK KARK	j		9.90					1
37730	10 /0	1 50	Т			ł		36
TRYCK	<u> </u>	1		<u> </u>		<u> </u>	<u> </u>	<u></u>
Remark	s (Obser	rvations	of Grou	nd Water	r etc	:.) 30m		
1					٠.٠	, O.III		
3					t t	6.80r	n	
1	Final							
	Remark	7.60 8.90 10.40 Remarks (Observation Struction Struct	7.60 1.40 8.90 1.30 8.90 1.50 Remarks (Observations Continuous Struck again	8.90 1.30 Remarks (Observations of Groud Continuous seepage Struck again at 7 After 20 min	8.90 1.30 Remarks (Observations of Ground Water Continuous seepage from Struck again at 7.50m After 20 mins rose	8.90 1.30 Remarks (Observations of Ground Water etc Continuous seepage from 0.8 Struck again at 7.50m After 20 mins rose to	8.90 1.30 Remarks (Observations of Ground Water etc.) Continuous seepage from 0.80m Struck again at 7.50m After 20 mins rose to 6.80m	8.90 1.30 8.20 7.60 1.40 8.20 The second second water etc.) Remarks (Observations of Ground Water etc.) Continuous seepage from 0.80m Struck again at 7.50m

I Penetration Test

N S.P.T. Value c Apparent Cohesion

Water levels are subject to seasonal or tidal variations and should not be taken as constant

					07 N		''' (1 26.	3 <i>J</i> ,
Holst Soil E	ngi	1661	ing		nite	j			10
ST 2002/F 2/26	REHC)LE	LOG		0683	-	7909	L	
Contract No. SI. 2903/F. 3426 Location Gwern-Y-Gedrych Client South Glamorgan Method of Boring Percussion Diameter of Borehole 0.20m					Sheet Chainag Ground Date			.1A	
Description of Strata	Legend	Depth Below G.L.(m)	Thickness of Strata(m)	Type of Sample	c KN/sq.m	Ø de⊊	m.c. %	y Kg/cu.m	N
TOPSOIL		0.30	0.30						į
Firm grey brown sandy CLAY with occasional stones				1.00	55	6	17.6	2085	
Stiff grey brown very sandy stony CLAY		1.90	1.60	2,30	74	10	12.3	2210	
Medium grained brown SAND		3.30	1.40	3-10	104	19	12.3	2215	
Brown laminated CLAY		4.10	0.60	4.10					
Medium dense brown medium grained SAND			1.30						14
Stiff grey brown sandy CLAY		5.70	0.30	1					
Dense brown medium grained SAND		6.30	0.60	6.00					54
Stiff grey brown very silty sandy stony CLAY with sand pockets				7,-50	193	12	11.0	2335	
	5 - 1	8.00	1.70			114			
`. .	,								
Key Undisturbed Sample Ø Angle of Friction O Disturbed Sample m.c.Moisture Conten Water Sample y Bulk Density I Penetration Test N S.P.T. Value c Apparent Cohesion	t	Water After Final	struck 20 min Stand	k at 3 ns ros ing le	und Wate .20m e to 2 vel 1.	. 50n 20m	n	be taken s	s constant

Holst Soll lingingoring Limited (1"262) BOREHOLE IOC ----

ייע	Page 1	- CE-	440	TOTAL TRANSPORT
	OPEHOI	=	106	0665 ~

ı		
١	Contract No. SI. 2903/F. 3426	
١	Client South Glamorsan (MILL Jake autonty)	Sheet 1. of 1
١	ClientSouth Glamorgan (4156 4 to Authority)	Chainage
١	Method of Boring Rencussion	Ground Level 24 . 41m. AOD
١	Diameter of Borehole 9 : 20m	Date12.6.76

	+									
Description	of Strata	Legend	Depth Below G.L(m)	Thickness of Strata(m)	of	c KN/sq.m	ø deg	m.c. %	y Kg/cu.m	N
TOPSOIL			0 /0	0 / 0						
		-	0.40	0.40						
Soft brown mottled	l silty CLAY									
					0.90	30	0	44.6	1745	
		FV===				30	V	44.0	1745	
Soft grey brown ve	ry silty CIAY		1.40	1.00	1,.50					
with thin sand ban	ds		2 22			16	0	45.3	1990	
Clayey SAND and GR	ÄVEL	70.77	2,00	0.60						
		2000	2.40	0.40		İ				
Brown clayey silty	SAND with				2.70					
occasional small s	tones					14	12	12.0	2135	
			3.20	0.80						
Stiff grey brown v	ery sandy CLAY		3.20	0.00.						
with bands of silt,	sand and	三宝								
occasional stones		F7==								
					4.20					
						65	32	9.5	2265	
•										
	•									
			-							
					6.00					
										Ì
					الا					Ì
**************************************			6.90	3.70						
Boulder obstruction	n - driven								İ	
ahead of borehole		/ \							į	
	-	\ \							ļ	
	1	1								
**	10 To 10 To		8.30	1.40	8,30					
Very stiff grey brovery sandy stony CI	wr very silty			1						I
very sandy stony or	-A1			-						İ
				·			-			
1					9.50					
							- 1			İ
			10.00			1		l		
Ke	y	Remarks	(Obser	vations c	of Groun	d Water	etc.	.)		
☐ Undisturbed Sample	Ø Angle of Friction	1	Water :	struck	at 1.	50m				
· · · · · · · · · · · · · · · · · · ·	m.c.Moisture Content			20 mins			iOm			
△ Water Sample	y Bulk Density	1	Final s	standir	ng leve	el 0.90	m			
I Penetration Test	N S.P.T. Value									
	c Apparent Cohesion	Water leve	ils are subje	ect to seaso	nel or tidel	variations	end sl	hould not b	e taken as c	onstant

Annex B

ERM Borehole Logs

Borehole No.

BH₁

Page 1 of 1

Client: Robert Bosch Ltd

Drilling Method:

Shell & Auger

Coordinates: 306453.7

Location:

Miskin

Drill Rig Type: Borehole Diameter: Cable Percussion 100mm 179113.88

27.22m AOD

ERM Project No: 0118282

118282 Logged by:

Simon Robinson

Total Depth: 9.3m

Ground Level:

Dates Drilled:

30.06.10

	Dates D	rilled:	3	0.06.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
MADE GROUND: Firm, dark brown silty clay with gravels. Gravels are coarse to boulder, angular, composed of slag material, limestone.		0	27.0 - 26.5 - 26.0						
Very soft, dark grey/green, silty SANDY CLAY. Sands are fine.		1.9 2.4	25.5	Black fibrous 'marker' layer stained immediate clay					
Dark grey/brown, slightly clayey SANDS and GRAVELS. Sands are fine to coarse. Gravels are fine to pebble, angular,	07.07.0	2.4	- 24.5 -	material. Slight tar odour.		BH1-2.5			
composed of limestone and sandstone.			24.0			BH1-3.0 BH1-3.5			
			23.5					abla	
	000		- 23.0 - 22.5			BH1-4.1			
Dark grey/green, GRAVELLY SAND. Sands are coarse. Gravels are coarse to pebble, angular to rounded, composed of limestone.		4.7	22.0			BH1-4.8			
Soft, dark grey SILTY CLAY with occasional gravels. Gravels are coarse,	-x-x- x-x-x	5.7	21.5						
rounded, composed of limestone. Dark grey/brown, slightly clayey		6.1	21.0			BH1-6.1			
GRAVELS. Gravels are fine to boulder, angular to rounded, composed of limestone and chert.		6.9	20.5						
Soft to firm, dark brown/grey CLAY.		7.2							
Dark grey, slightly clayey GRAVELS. Gravels are fine to boulder, angular to rounded, composed of limestone and chert.		8.1	- 19.5 - 19.0						
Firm to stiff, dark brown, slightly sandy gravelly CLAY. Sands are coarse. Gravels are fine to pebble, angular to subangular, composed of limestone.		9.3	18.5						
1	/	7.3							

Remarks:

Soil bore in 'South' field east of production building

Groundwater:

Depth:

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 9.3m bgl

Gravel:
Plain pipe:
Slotted screen:
Well diameter:
Slot size:
Well material:
Filter pack grain size:

DAET CONFIDENTIA

Borehole No.

BH₂

Page 1 of 1

Client: Robert Bosch Ltd Drilling Method:

Shell & Auger

306398.51 Coordinates:

Location:

Miskin

Drill Rig Type:

Cable Percussion

179026.09

Borehole Diameter: 100mm Simon Robinson Ground Level:

27.38m AOD

ERM Project No: 0118282 Logged by:

30.06.10 Dates Drilled:

Total Depth: 9.5m

	Dates D	rilled:	3	0.06.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
MADE GROUND: Soft - firm, dark brown silty clay with gravels. Gravels are coarse to cobble, angular, composed of slag material, limestone.		0	- 27.0 - 26.5						
Soft, dark grey/green SILTY CLAY with occasional gravels.	X - X - X - X - X - X - X - X - X - X - X - X -	1.1	26.0						
	$\times - \times - \times$		25.5						
Soft, dark grey/green, slightly sandy CLAYEY SILT with gravels. Sands are	×-×-× -×-×-	2.2	25.0						
fine. Gravels are fine to pebble, angular to rounded, composed of limestone.	X-X-X- X-X-X-		24.5						
	×-×-× -×-×-		24.0						
Dark brown, slightly clayey SANDY GRAVELS. Sands are coarse. Gravels are	-x-x- x-x-x 0:::0:::0	4.0	23.5			BH2-4.0		abla	
coarse to cobble, angular to subrounded, composed of limestone.	00000	4.5	23.0			BH2-4.5			
Dark brown, slightly sandy CLAYEY GRAVELS. Sands are fine. Gravels are fine to boulder, angular to subrounded,		4.5	22.5			BH2-5.0			
composed of limestone.		5.1	22.0			BH2-3.0			
Firm to stiff, dark brown, slightly silty GRAVELLY CLAY. Gravels are fine to cobble, angular to subrounded, composed			21.5			BH2-6.0			
of limestone.			21.0			B112 0.0			
			20.5						
			20.0						
			19.5			BH2-8.0			
			19.0						
Stiff, grey slightly gravelly CLAY. Gravels		9.0	18.5						
are fine to pebble, rounded, composed of limestone.			18.0						

Remarks:

Soil bore in 'South' field east of production building

Concrete:

Bentonite: 0.0 - 9.5m bgl

Backfill/Installation Details:

Gravel: Plain pipe:

Groundwater:

Depth:

Strike: 4.0m bgl

Slotted screen: Well diameter: Slot size: Well material:

Borehole No.

BH3

Page 1 of 1

Client: **Robert Bosch Ltd** Drilling Method: Shell & Auger Coordinates: 306465.21

Location: Miskin Drill Rig Type: **Cable Percussion** 178995.89

> Borehole Diameter: 100mm Ground Level: 27.21m AOD

ERM Project No: 0118282 Simon Robinson Logged by: Total Depth: 9.0m

> 01 07 10 Dates Drillade

	Dates D	rilled:	0	1.07.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
MADE GROUND: Very soft, dark grey, silty, gravelly clay. Gravels are fine to cobble, angular to rounded, composed of limestone, sandstone and coal fragments.		0	- 27.0 - 26.5						
MADE GROUND: Very soft, dark brown/red, sandy, silty, gravelly, clay. Sands are coarse. Gravels are fine to		0.9	26.0						
cobble, angular to rounded, composed of limestone, sandstone and coal fragments.	$\begin{pmatrix} \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times$	1.7	25.5						
Soft, light grey/green, slightly clayey SILT.	-x-x- x-x-x -x-x-	2.0	25.0						
Soft, light green, slightly sandy, slightly gravelly CLAYEY SILT. Sands are fine. Gravels are medium to pebble, subangular	×-×-× · ·×· · ·> ×· · ·×·	2.6	24.5			BH3-2.6 BH3-3.0			
to rounded, composed of limestone.	× · · · × ·		24.0			БП3-3.0			
Soft, light grey/green, SANDY, GRAVELLY SILT. Sands are fine. Gravels are coarse to pebble, angular to	× · · · × ·		- 23.5					_	
subrounded, composed of limestone.	10:1:0:1:0	4.0	23.0			BH3-4.0		\square	
Dark grey SANDY GRAVELS. Sands are coarse. Gravels are coarse to cobble, subrounded to rounded, composed of limestone.		4.5	22.5			BH3-4.5			
Dark grey, GRAVELLY SAND. Sands are coarse. Gravels are fine to cobble,	× × ×	5.1	22.0			BH3-5.0			
subangular to rounded, composed of limestone.	× × × × ×		21.5						
Very soft, dark grey, slightly clayey, slightly sandy SILT. Sands are fine.			21.0						
	× × ×		20.5						
	× × ×		20.0						
	× × ×		19.5						
	× × × × ×		19.0						
	× × × × × × × × × × × × × × × × × × ×	9.0	18.5						

Remarks:

Soil bore in the middle of the 'South' field east of production building

Groundwater:

Depth:

Strike: 4.0m bgl

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 9.0m bgl

Gravel: Plain pipe: Slotted screen: Well diameter: Slot size: Well material:

Borehole No.

BH4

Page 1 of 1

Client: **Robert Bosch Ltd** Drilling Method:

Shell & Auger

Coordinates: 306578.12

Location:

Miskin

Drill Rig Type:

Borehole Diameter:

Cable Percussion

179016.03

ERM Project No: 0118282

Logged by:

Simon Robinson

Total Depth:

Ground Level:

9.0m

25.69m AOD

100mm

	Dates D	rilled:	0	1.07.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
Soft to firm, dark brown/light brown, slightly clayey SILT with rootlets.	× × × × × × × × × × × × × × × × × × ×	0	25.5						
Soft, light grey/yellow SANDY CLAY with rare gravels. Gravels are pebble, subrounded, composed of limestone and siltstone.		0.6	25.0 - 24.5						
Light grey/yellow, clayey, gravelly SILTY SAND. Sands are fine to coarse. Gravels	×···×·	1.5	24.0			BH4-1.5			
are fine to cobble, angular to rounded, composed of limestone.		1.9	23.5			BH4-1.9			
Dark grey, slightly sandy GRAVELS. Sands are coarse. Gravels are coarse to cobble, subangular to rounded, composed		2.5	23.0			BH4-2.5			
of limestone.			22.5						
Dark grey, GRAVELLY SAND. Sands are coarse. Gravels are fine to pebble, angular to subrounded, composed of limestone and sandstone.	0::0::0		22.0			BH4-3.5			
	0.0000		21.5						
Dark grey, slightly silty SAND. Sands are fine to coarse.		4.5	21.0			BH4-4.5			
Very soft, dark grey SILT.	× × × × × ×	4.9	20.5						
	× × × × ×		20.0						
	×		- 19.5 -						
	× × × × ×		19.0						
	×		18.5						
	× × ×		18.0						
	× × × × × × × × × × × × × × × × × × ×		- 17.5						
	× × × × × ×	9.0	17.0						

Remarks:

Soil bore in the eastern region of the 'South' field near the stream

Groundwater:

Depth:

Strike: 1.9m bgl

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 9.0m bgl

Gravel: Plain pipe: Slotted screen: Well diameter: Slot size: Well material:

Borehole No.

BH₅

Page 1 of 1

Client: Robert Bosch Ltd Drilling Method:

Shell & Auger Coordinates:

306674.35

Location:

Miskin

Drill Rig Type: **Cable Percussion** 179004.15

Borehole Diameter: 100mm Ground Level: 25.54m AOD

Total Depth:

ERM Project No: 0118282 Logged by: Simon Robinson

8.0m

	Dates D	rilled:	02	2.07.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
Firm to stiff, dark brown, slightly clayey	× × ×	0	- 25.5						
SILT with rootlets. Firm to stiff, light grey/brown, slightly sandy CLAYEY SILT. Sands are fine to	×-×-× -×-×- ×-×-×	0.3	25.0						
medium. Light grey/brown, CLAYEY SILTY SAND	×-×-× ×-×-×	1.3	24.5						
with rare gravels. Sands are fine to coarse. Gravels are medium to pebble, subangular, composed of limestone.	X···X·	1.5 1.5	24.0			BH5-1.8			
Brown/grey, slightly silty GRAVELLY SAND. Sands are coarse. Gravels are fine to pebble, subangular to rounded,			23.5			B110 1.0		abla	
composed of limestone. Dark grey, silty, sandy, very CLAYEY		2.4	23.0			BH5-2.4 BH5-2.7			
GRAVEL. Sands are fine to coarse. Gravels are fine to cobble, subangular to rounded, composed of limestone.		3.1	22.5			BH5-3.1			
Dark grey, SANDY GRAVEL. Sands are coarse. Gravels are fine to cobble, subrounded to rounded, composed of	×: ::×:	3.5	22.0			BH5-3.5			
limestone, sandstone and chert. Dark grey, slightly silty, GRAVELY	×···×·		- 21.5 -						
SAND. Sands are fine to coarse. Gravels are fine to pebble, rounded, composed of limestone and chert.	×···×·· ··×··×·		21.0						
Soft, dark grey, slightly gravelly, SANDY SILT. Sands are fine to coarse. Gravels are fine to pebble, subrounded to rounded,	× × × ×	5.1	20.5						
Soft to firm, light grey, slightly clayey			- 19.5						
SILT.	× × × ×		19.0						
	× × × × × × × × × × × × × × × × × × ×		- 18.5						
	× × × × × × × × × × × × × × × × × × ×		18.0						
	× × ×	8.0	-						

Remarks:

Soil bore east of the 'South' field

Groundwater:

Depth:

Strike: 2.4m bgl

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 8.0m bgl

Gravel: Plain pipe: Slotted screen: Well diameter: Slot size: Well material:

Borehole No.

BH₆

Page 1 of 1

Client: Robert Bosch Ltd

Drilling Method:

Shell & Auger

Simon Robinson

306578.46

Location:

Miskin

Drill Rig Type: Cable Percussion

178923.31

он.

Borehole Diameter:

Ground Level: 25.48m AOD

ERM Project No: 0118282 Logged by:

Total Depth:

Coordinates:

10.1m

Dates Drilled:

05.07.10

100mm

	Dates D	rilled:	0	5.07.10					
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
Soft to firm, light brown, slightly clayey	× × ×	0	Ė						
SILT.	$-\times-\times-$	0.4	25.0						
Soft, light brown, CLAYEY SILT.	×-×-× -::-	0.8	- 24.5						
Very soft, light grey/orange mottled brown, slightly silty, SANDY CLAY. Sands are fine to coarse.		1.3	24.0			BH6-1.5			
Light/dark grey, CLAYEY GRAVELLY SAND. Sands are fine to coarse. Gravels are coarse to pebble, subrounded to			23.5			BH6-2.0			
rounded, composed of limestone.	8-8-1	2.5	23.0			BH6-2.5		abla	
Dark grey/brown, SANDS and GRAVELS. Sands are coarse. Gravels are fine to cobble, subangular to rounded,			22.5			BH6-3.0			
composed of limestone and chert.	O 7 O 7 C O 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	3.6	22.0						
Very soft to soft, dark grey, slightly clayey SILT.	× × ×		21.5						
	× × × × × × × ×		21.0						
	× × ×		20.5						
	× × × × × × × × × × × × × × × × × × ×		20.0						
	× × ×		19.5						
	× × × × × × × ×		19.0						
	× × ×		18.5						
	× × × × × × × × × ×		18.0						
	× × ×		17.5						
	× × × × ×		17.0						
	× × ×		16.5						
	× × × × × × × × × × × × × × × × × × ×		16.0						
	× × ×	10.1	15.5						

Remarks:

Soil bore east of the 'South' field near the stream

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 10.1m bgl

Gravel: Plain pipe:

Slotted screen: Well diameter:

Slot size:

Well material: Filter pack grain size:

Groundwater:

Depth:

Strike: 2.5m bgl

 □

Borehole No.

BH7

Page 1 of 1

Client: Robert Bosch Ltd Drilling Method: Shell & Auger Coordinates: 306494.29

Location: Miskin Drill Rig Type: Cable Percussion 178901.55

Borehole Diameter: 100mm Ground Level: 27.33m AOD

ERM Project No: 0118282 Logged by: Simon Robinson Total Depth: 8.0m

Dates Drilled: 02.07.10

Dates Drilled: 02.07.10									
Description of Strata	Legend	Depth and thickness of strata (m)	O.D. Level (m)	Observations	PID (ppmv)	Sampling	Sample Intervals	Ground- water Depth	Backfill/ Installation Details
MADE GROUND: Soft, dark brown/red silty, gravelly clay. Gravels are fine to cobble, angular to rounded, composed of limestone, chert, siltstone and sandstone.		0	- 27.0 - 26.5						
Soft, dark grey, slightly silty SANDY GRAVELLY CLAY. Sands are fine. Gravels are fine to pebble, subrounded, composed of limestone.		1.3	25.5 - 25.0 - 24.5						
Dark grey/light brown, SANDY CLAYEY GRAVELS. Sands are coarse. Gravels are fine to pebble, subrounded to rounded, composed of limestone.		3.0	24.0			BH7-3.5			
Dark brown/grey SANDY GRAVEL. Sands are coarse. Gravels are fine to pebble, rounded, composed of limestone.	0-0-1 0-0-1 0-0-1		23.0			BH7-4.0 BH7-4.5			
Dark grey, GRAVELLY SAND. Sands are coarse. Gravels are fine to pebble, subangular to rounded, composed of		4.6 5.0	22.5			BH7-5.0			
Dark brown/grey SANDY GRAVEL. Sands are coarse. Gravels are fine to pebble, rounded, composed of limestone.	0.000000000000000000000000000000000000		22.0			BH7-6.0			
Soft, dark grey/brown, slightly gravelly, SANDY SILT. Sands are fine. Gravels are fine to coarse, rounded, composed of limestone.	×···×··	6.2	21.0						
Soft, dark grey, slightly sandy SILT with rare gravels. Sands are fine. Gravels are fine to pebble, rounded, composed of limestone.	× × × × × × × × × × × × × × × × × × ×	7.1	- 19.5 - 19.0						
	× × ×	9.0	18.5						<u> </u>

Remarks:

Soil bore in the 'South' field near the stream

Groundwater:

Depth:

☑ Strike: 4.0m bgl

Backfill/Installation Details:

Concrete:

Bentonite: 0.0 - 9.0m bgl

Gravel: Plain pipe: Slotted screen: Well diameter: Slot size: Well material:

Filter pack grain size:

DAET CONFIDENTIA

Annex C

Laboratory Certificates

Laboratory Report

Contract Number: 10482

Client's Reference: tbc Report Date: 27-07-2010

Client Name: Apex Drilling Services Limited

Sturmi Way

Village Farm Industrial Estate, Pyle

Bridgend CF33 6BZ

Contract Title: Bosch, Miskin For the attention of: Keith Richards

Date Received: 07-07-2010 Date Commenced: 07-07-2010 Date Completed: 27-07-2010

Test Description	Quantity	Checked	Approved
PSD Wet Sieve method	34		
BS1377:1990 2/9.2 *			
Bulk/Dry Density	34		

Notes: Observations and Interpretations are outside the UKAS Accreditation

* - Denotes test included in laboratory scope of accreditation

- Denotes test carried out by approved contractor

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Approved Signatories:

D V Edwards (Managing Director), Alun Walters (Technical Manager), E Sharp (Technical Co-Ordinator).

SUMMARY OF SOIL DENSITY TESTS.

(B.S. 1377 : PART 4 : 4.3/4.4 : 1990)

						Method	Maximum	Minimum	
Trial Pit	Sample	Depth	Moisture	Bulk	Dry	of Laboratory	Dry	Dry	Remarks
Number	Number	m	Content	Density	Density	compaction	Density	Density	Remarks
			%	Mg/m3	Mg/m3	(kg Rammer)	Mg/m3	Mg/m3	
BH1		2.50	15	2.36	2.06				
BH1		3.00	10	2.44	2.21				
BH1		3.50	10	2.38	2.16				
BH1		4.10	8	2.4	2.28				
BH1		4.80	18	2.37	2				
BH2		4.00	5	2.54	2.43				
BH2		4.50	12	2.38	2.13				
BH2		5.00	10	2.49	2.25				
BH2		6.00	9	2.55	2.35				
BH2		8.00	13	2.41	2.14				
вн3		2.60	10	2.46	2.24				
вн3		3.00	10	2.44	2.21				
вн3		4.00	5	2.24	2.12				
вн3		4.50	10	2.25	2.05				
вн3		5.00	25	2.15	1.72				
BH4		1.50	11	2.24	2.02				
BH4		1.90	5	2.2	2.09				
BH4		2.50	8	2.35	2.17				
BH4		3.50	12	2.42	2.16				
BH4		4.50	24	2.31	1.86				
BH5		1.80	8	2.48	2.31				
BH5		2.40	9	2.13	1.96				

27/2010

LABORATORY TESTING SERVICES LIMITED

27/07/2010

Checked By Date Approved By Date

Contract No. GEO/220/04

Bron-y-Glyn, Penarth Client Ref No P244

GEO/53 June-04 Issue No.1 GEO/220/04 Bynea, Llanelli, SA14 9SU

SUMMARY OF SOIL DENSITY TESTS.

(B.S. 1377 : PART 4 : 4.3/4.4 : 1990)

						Method	Maximum	Minimum	
Trial Pit	Sample	Depth	Moisture	Bulk	Dry	of Laboratory	Dry	Dry	
Number	Number	m	Content	Density	Density	compaction	Density	Density	Remarks
			%	Mg/m3	Mg/m3	(kg Rammer)	Mg/m3	Mg/m3	
BH5		2.70	6	2.23	2.11				
ВН5		3.10	3	2.27	2.19				
ВН5		3.50	12	2.2	1.97				
BH6		1.50	12	2.42	2.15				
BH6		2.00	11	2.45	2.21				
ВН6		2.50	5	2.24	2.14				
BH6		3.00	5	2.22	2.12				
BH7		3.50	12	2.45	2.2				
BH7		4.00	5	2.16	2.06				
BH7		4.50	6	2.3	2.17				
BH7		5.00	5	2.2	2.09				
BH7		6.00	17	2.33	1.99				

27/07/2010

27/07/2010

Checked By

Date

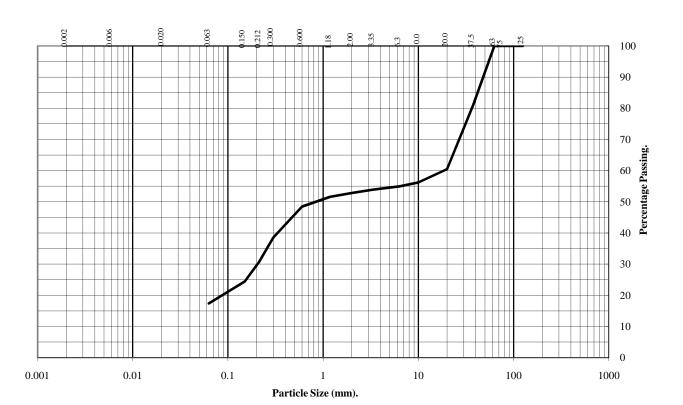
Approved By

Date

Contract No.

GEO/220/04

Bron-y-Glyn, Penarth


Client Ref No

P244

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH1 Type: В Depth (m): **2.50** to **2.70**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	81
20	60
10	56
6.3	55
3.35	54
2.00	53
1.18	52
0.60	48
0.300	39
0.212	31
0.150	24
0.063	17

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	47
Sand	36
Silt and Clay	17

Remarks:

#- not determined

Checked by

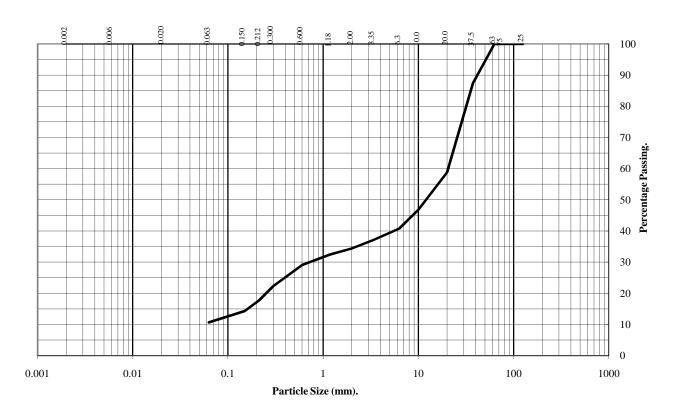
27/07/2010 Date

27/07/2010

Approved by

Date

LABORATORY TESTING SERVICES LIMITED


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH1 Type: В Depth (m): **3.00** to **3.30**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	87
20	59
10	47
6.3	41
3.35	37
2.00	34
1.18	32
0.60	29
0.300	22
0.212	18
0.150	14
0.063	11

LABORATORY TESTING SERVICES LIMITED

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand	0 66 23
Silt and Clay	11

Remarks:

#- not determined

Checked by Date

27/07/2010

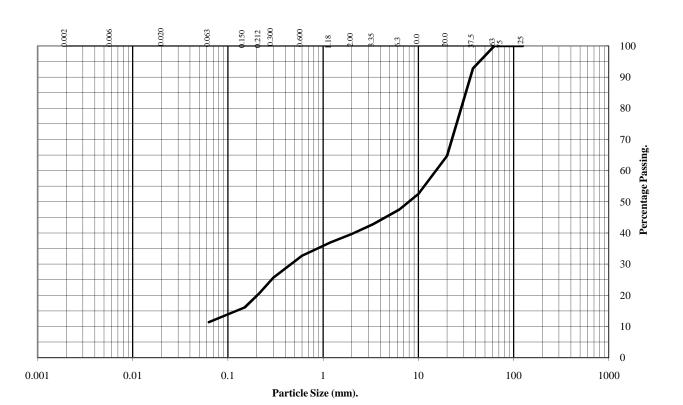
Approved by

27/07/2010

Date

Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:



Page of

GEO/104-2 Dec 05 Issue No 1.2

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH1 Type: B Depth (m): 3.50 to 4.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	93
20	65
10	52
6.3	47
3.35	43
2.00	40
1.18	37
0.60	33
0.300	26
0.212	21
0.150	16
0.063	11

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 60 29 11

Remarks:

#- not determined

21/07/2010 Checked by Date

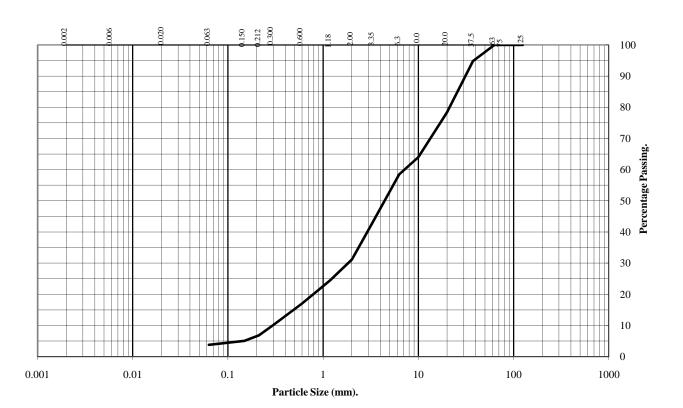
or (O) (menter)

27/07/2010

Approved by

Date

LABORATORY TESTING SERVICES LIMITED


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH1 Type: В Depth (m): **4.10** to **4.60**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	95
20	78
10	64
6.3	58
3.35	43
2.00	31
1.18	24
0.60	17
0.300	10
0.212	7
0.150	5
0.063	4

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 69 27 4

Remarks:

#- not determined

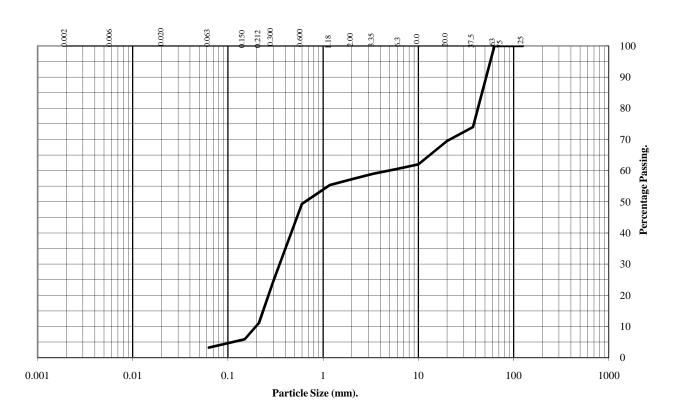
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH1 Type: В Depth (m): **4.80** to **5.10**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	74
20	69
10	62
6.3	61
3.35	59
2.00	57
1.18	55
0.60	49
0.300	24
0.212	11
0.150	6
0.063	3

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 43 54 3

Remarks:

#- not determined

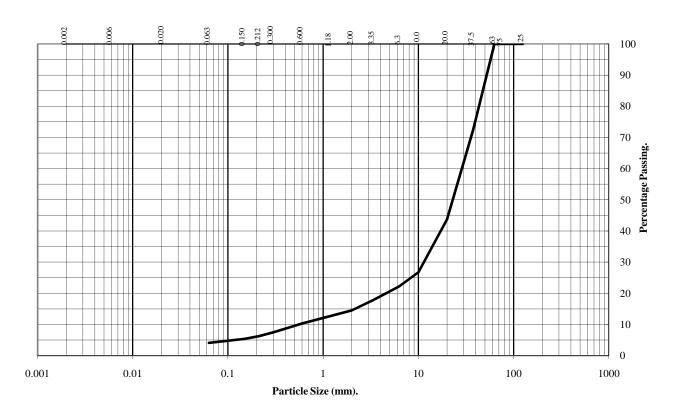
Checked by Date

27/07/2010

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH2 Type: В Depth (m): **4.00** to **4.50**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	72
20	44
10	27
6.3	22
3.35	18
2.00	15
1.18	13
0.60	10
0.300	7
0.212	6
0.150	5
0.063	4

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 85 11 4
·	

Remarks:

#- not determined

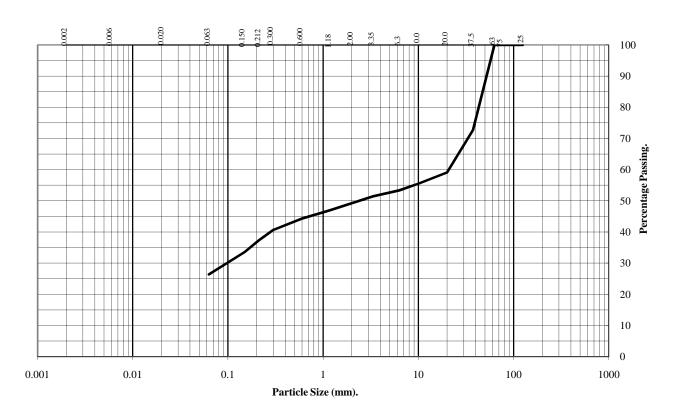
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH2 Type: В Depth (m): **4.50** to **5.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	73
20	59
10	55
6.3	53
3.35	51
2.00	49
1.18	47
0.60	44
0.300	41
0.212	37
0.150	34
0.063	26

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel Sand	51 23
Silt and Clay	26

Remarks:

#- not determined

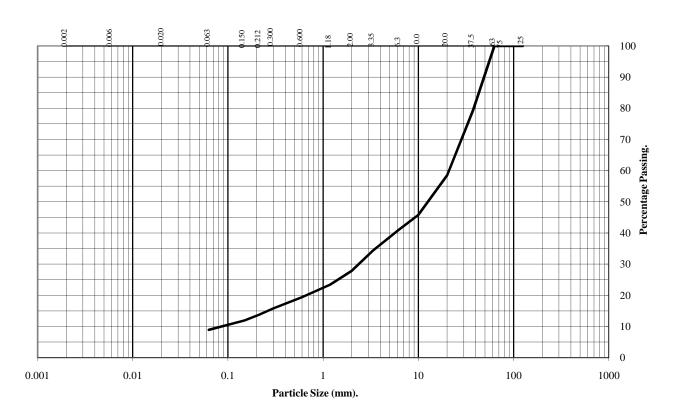
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH2 Type: B Depth (m): 5.00 to 6.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	79
20	58
10	46
6.3	41
3.35	34
2.00	28
1.18	23
0.60	19
0.300	16
0.212	14
0.150	12
0.063	9

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 72 19 9

Remarks:

#- not determined

Checked by I

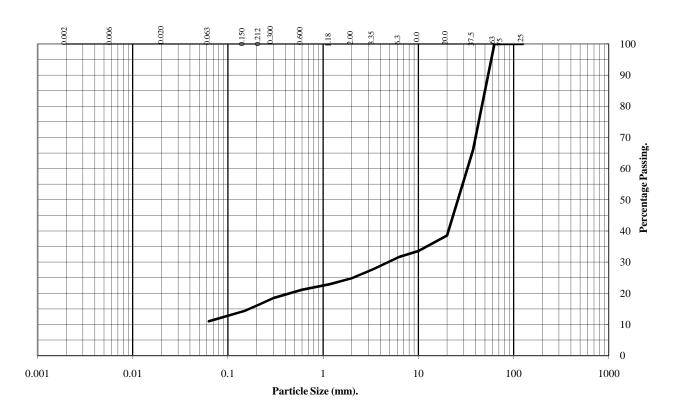
27/07/2010 Date

Annaged by

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH2 Type: В Depth (m): **6.00** to **7.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	66
20	39
10	34
6.3	32
3.35	28
2.00	25
1.18	23
0.60	21
0.300	18
0.212	16
0.150	14
0.063	11

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 75 14 11

Remarks:

#- not determined

27/07/2010

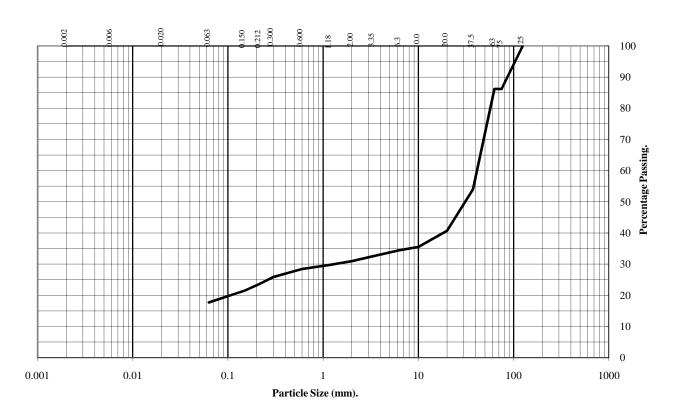
Date

Checked by

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH2 Type: В Depth (m): **8.00** to **9.00**

BS Test	Percentage
Sieve	Passing
125	100
75	86
63	86
37.5	54
20	41
10	36
6.3	34
3.35	33
2.00	31
1.18	30
0.60	28
0.300	26
0.212	24
0.150	21
0.063	18

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	14 55 13 18

Remarks:

#- not determined

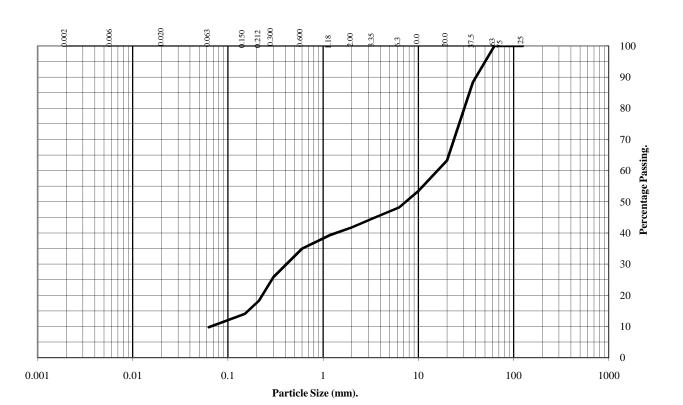
Checked by

27/07/2010 Date

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH3 Type: B Depth (m): 2.60 to 3.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	88
20	63
10	53
6.3	48
3.35	45
2.00	42
1.18	39
0.60	35
0.300	26
0.212	18
0.150	14
0.063	10

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 58 32 10

Remarks:

#- not determined

Checked by

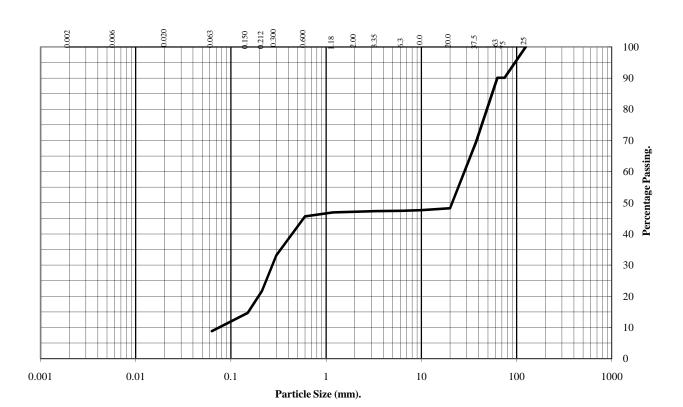
27/07/2010 Date

Annuavad by

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH3 Type: В Depth (m): **3.00** to **4.00**

BS Test	Percentage
Sieve	Passing
125	100
75	90
63	90
37.5	69
20	48
10	48
6.3	47
3.35	47
2.00	47
1.18	47
0.60	46
0.300	33
0.212	22
0.150	15
0.063	9

LABORATORY TESTING SERVICES LIMITED

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel	10 43
Sand Silt and Clay	38 9

Remarks:

#- not determined

Checked by

27/07/2010

Approved by

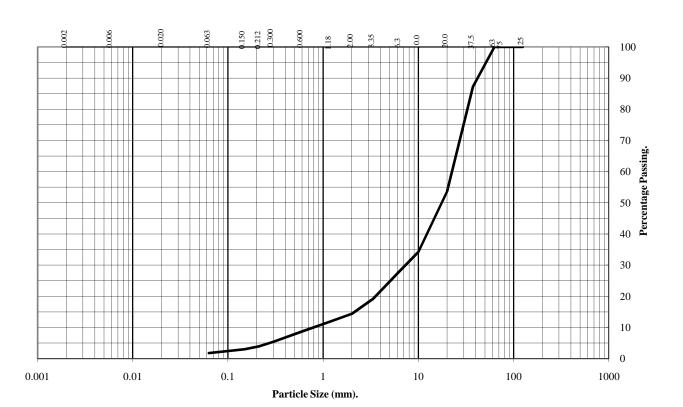
27/07/2010

Date

Date

Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:



Page of

GEO/104-2 Dec 05 Issue No 1.2

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH3 Type: B Depth (m): 4.00 to 4.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	87
20	54
10	34
6.3	28
3.35	19
2.00	14
1.18	12
0.60	9
0.300	5
0.212	4
0.150	3
0.063	2

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	86
Sand	12
Silt and Clay	2

Remarks:

#- not determined

Checked by

27/07/2010 Date

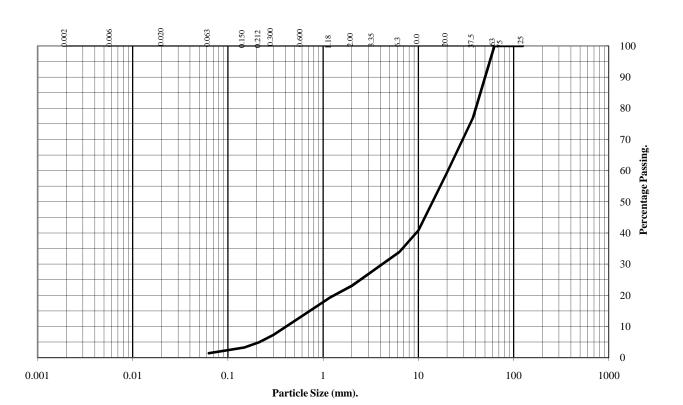
. .

27/07/2010

Approved by

Date

LABORATORY TESTING SERVICES LIMITED


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH3 Type: В Depth (m): **4.50** to **5.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	77
20	59
10	41
6.3	34
3.35	28
2.00	23
1.18	19
0.60	13
0.300	7
0.212	5
0.150	3
0.063	1

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 77 22 1

Remarks:

#- not determined

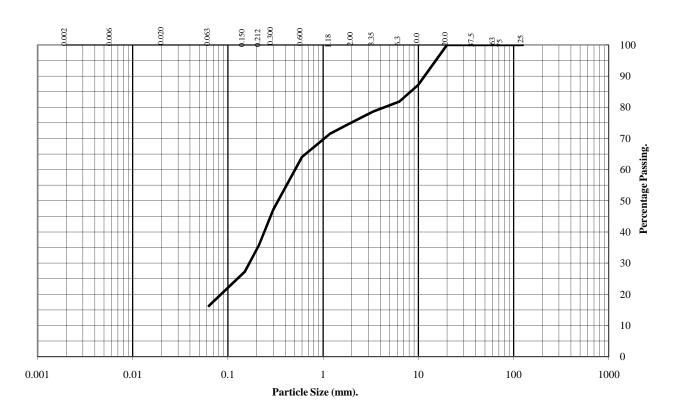
27/07/2010

Checked by Date

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH3 Type: В Depth (m): **5.00** to **6.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	100
10	87
6.3	82
3.35	79
2.00	75
1.18	71
0.60	64
0.300	47
0.212	36
0.150	27
0.063	16

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 25 59 16

Remarks:

#- not determined

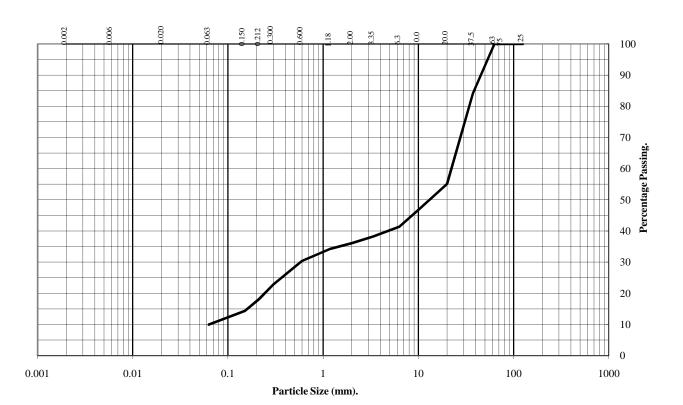
Checked by Date

27/07/2010

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH4 Type: B Depth (m): 1.50 to 1.90

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	84
20	55
10	47
6.3	41
3.35	38
2.00	36
1.18	34
0.60	30
0.300	23
0.212	18
0.150	14
0.063	10

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 64 26 10

Remarks:

#- not determined

Date

Checked by

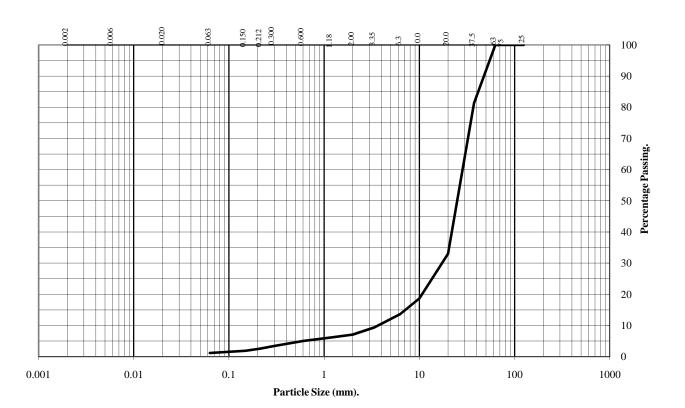
27/07/2010

Annuavad by

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH4 Type: B Depth (m): 1.90 to 2.30

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	81
20	33
10	19
6.3	14
3.35	9
2.00	7
1.18	6
0.60	5
0.300	3
0.212	3
0.150	2
0.063	1

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 93 6 1

Remarks:

#- not determined

Checked by

27/07/2010 Date

A

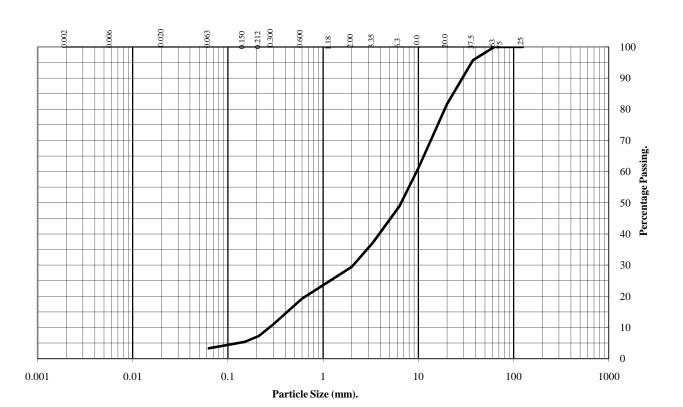
27/07/2010

Approved by

Date

Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:


GEO/104-2 Dec 05

Issue No 1.2

Page of

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH4 Type: B Depth (m): 2.50 to 3.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	96
20	82
10	61
6.3	49
3.35	37
2.00	29
1.18	25
0.60	19
0.300	11
0.212	7
0.150	5
0.063	3

LABORATORY TESTING SERVICES LIMITED

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 71 26 3

Remarks:

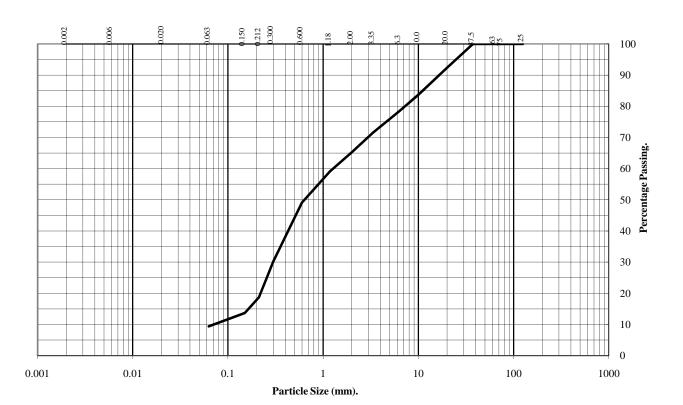
#- not determined

Checked by

27/07/2010 Date

Approved by

27/07/2010 Date


Contract No.: 10482-070710
Client Ref No:

Bosch, Miskin

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH4 Type: В Depth (m): **3.50** to **4.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	92
10	84
6.3	78
3.35	72
2.00	65
1.18	59
0.60	49
0.300	30
0.212	19
0.150	14
0.063	9

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 35 56 9

Remarks:

#- not determined

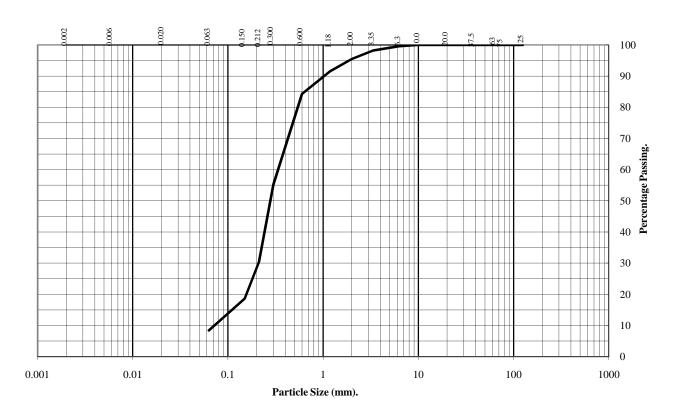
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH4 Type: B Depth (m): 4.50 to 4.90

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	98
2.00	95
1.18	92
0.60	84
0.300	55
0.212	30
0.150	19
0.063	8

LABORATORY TESTING SERVICES LIMITED

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	5
Sand	87
Silt and Clay	8

Remarks:

#- not determined

Checked by

27/07/2010 Date

Annuoved by

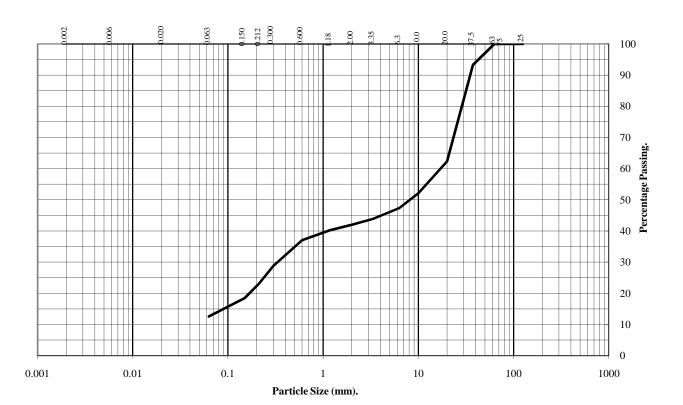
27/07/2010

Approved by

Date

Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:



Page of

GEO/104-2 Dec 05 Issue No 1.2

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH5 Type: В Depth (m): **1.80** to **2.40**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	93
20	62
10	52
6.3	47
3.35	44
2.00	42
1.18	40
0.60	37
0.300	29
0.212	23
0.150	18
0.063	13

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand	0 58 29
Silt and Clay	13

Remarks:

#- not determined

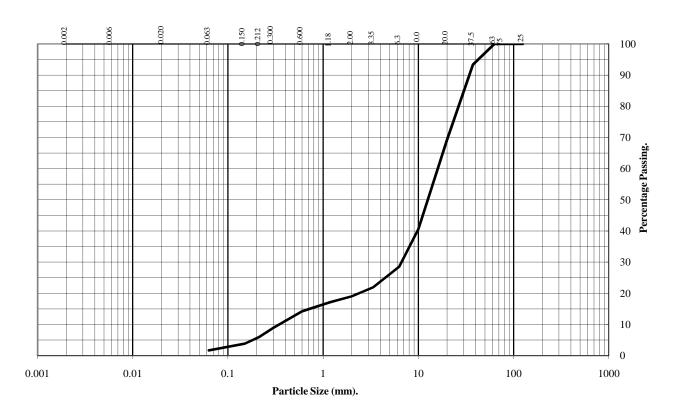
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH5 Type: B Depth (m): 2.40 to 2.70

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	93
20	69
10	41
6.3	29
3.35	22
2.00	19
1.18	17
0.60	14
0.300	9
0.212	6
0.150	4
0.063	2

	Particle	Percentage
L	Diameter	Passing
	0.02	#
	0.006	#
L	0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 81 17 2

Remarks:

#- not determined

Checked by

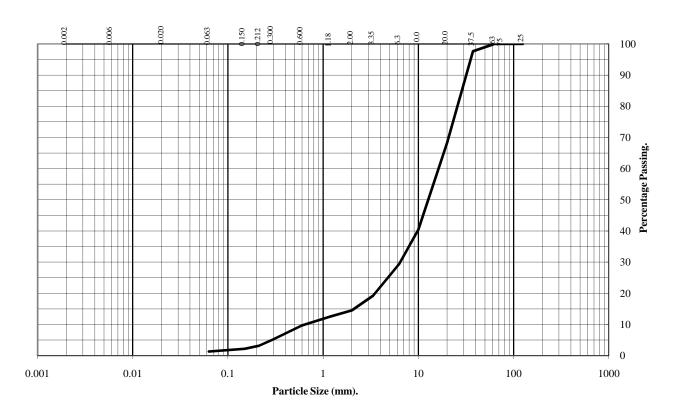
27/07/2010 Date

Anne

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH5 Type: В Depth (m): **2.70** to **3.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	98
20	68
10	40
6.3	29
3.35	19
2.00	15
1.18	13
0.60	10
0.300	5
0.212	3
0.150	2
0.063	1

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 85 14 1

Remarks:

#- not determined

Checked by

27/07/2010 Date

27/07/2010

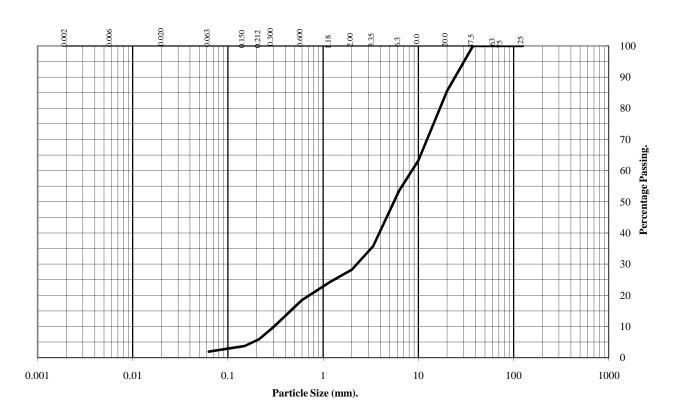
Approved by

Date

Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

GEO/104-2 Dec 05


LABORATORY TESTING SERVICES LIMITED

Issue No 1.2

Page of

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH5 Type: B Depth (m): 3.10 to 3.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	86
10	63
6.3	54
3.35	36
2.00	28
1.18	24
0.60	18
0.300	10
0.212	6
0.150	4
0.063	2

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 72 26 2
20110	

Remarks:

#- not determined

Checked by

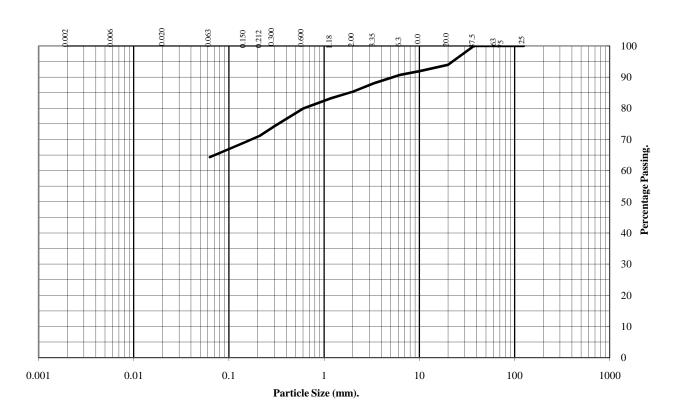
27/07/2010 Date

Appro

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH5 Type: В Depth (m): 3.50 to 3.80

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	94
10	92
6.3	91
3.35	88
2.00	85
1.18	83
0.60	80
0.300	74
0.212	71
0.150	69
0.063	64

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 15 21 64

Remarks:

#- not determined

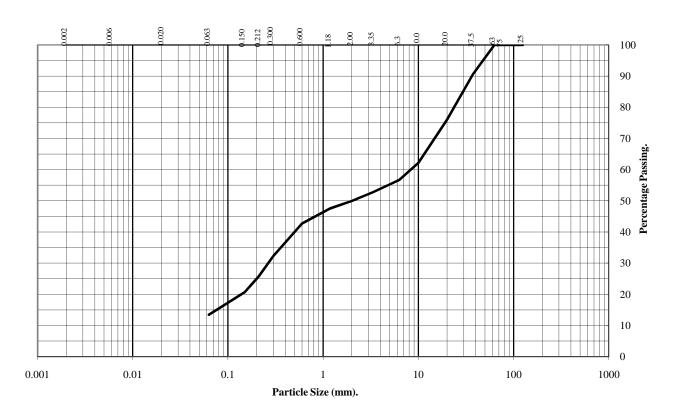
Checked by

27/07/2010 Date

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH6 Type: В Depth (m): **1.50** to **2.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	91
20	76
10	62
6.3	57
3.35	53
2.00	50
1.18	48
0.60	43
0.300	32
0.212	26
0.150	21
0.063	13

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 50 37 13

Remarks:

#- not determined

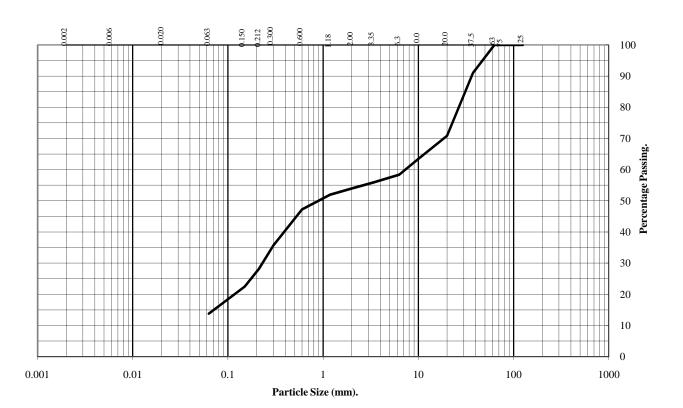
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH6 Type: B Depth (m): 2.00 to 2.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	91
20	71
10	63
6.3	58
3.35	56
2.00	54
1.18	52
0.60	47
0.300	36
0.212	28
0.150	22
0.063	14

LABORATORY TESTING SERVICES LIMITED

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 46 40 14

Remarks:

#- not determined

Checked by

27/07/2010 Date

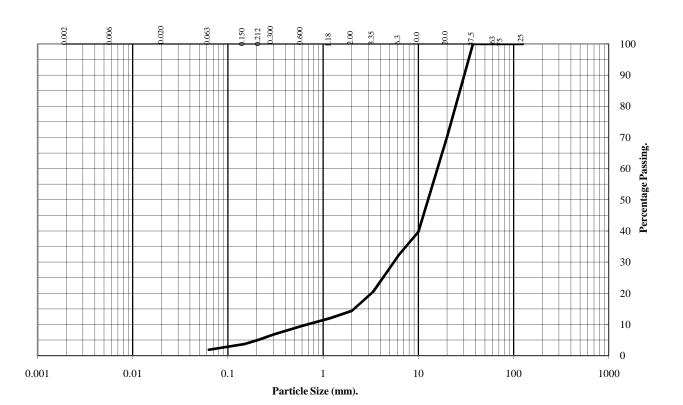
Approved by

27/07/2010

Date

Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:



Page of

GEO/104-2 Dec 05 Issue No 1.2

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH6 Type: В Depth (m): **2.50** to **3.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	100
20	70
10	40
6.3	32
3.35	20
2.00	14
1.18	12
0.60	10
0.300	7
0.212	5
0.150	4
0.063	2

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 86 12 2

Remarks:

#- not determined

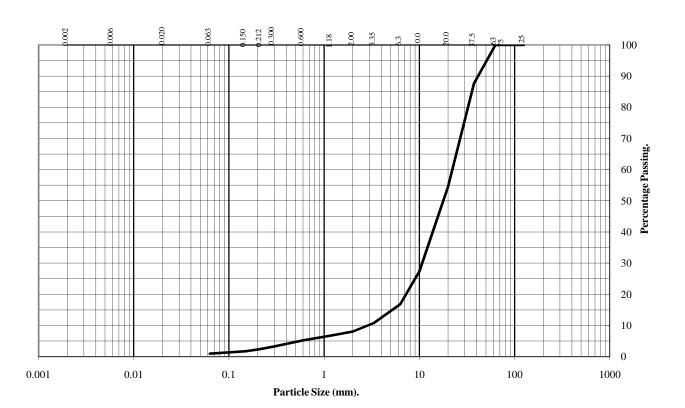
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH6 Type: В Depth (m): 3.00 to 3.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	88
20	54
10	27
6.3	17
3.35	11
2.00	8
1.18	7
0.60	5
0.300	3
0.212	2
0.150	2
0.063	1

	Particle	Percentage
L	Diameter	Passing
	0.02	#
	0.006	#
L	0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 92 7 1

Remarks:

#- not determined

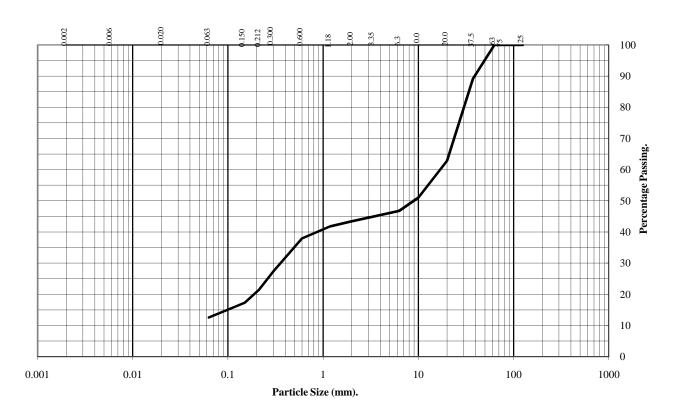
Checked by

27/07/2010 Date

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: **BH7** Type: В Depth (m): **3.50** to **4.00**

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	89
20	63
10	51
6.3	47
3.35	45
2.00	43
1.18	42
0.60	38
0.300	27
0.212	21
0.150	17
0.063	13

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 57 30 13

Remarks:

#- not determined

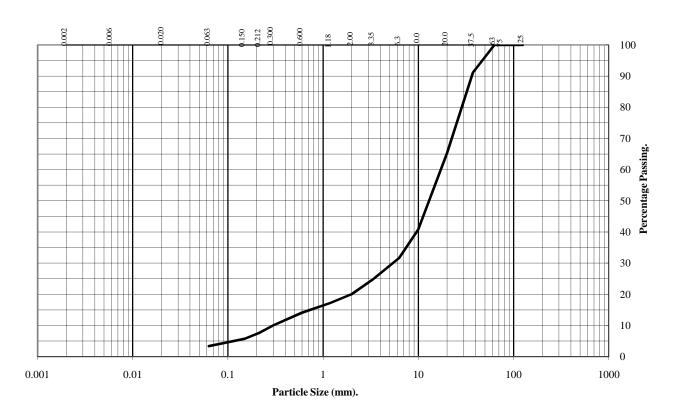
Checked by

27/07/2010 Date

Approved by

27/07/2010

Date


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH7 Type: B Depth (m): 4.00 to 4.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	91
20	65
10	41
6.3	32
3.35	25
2.00	20
1.18	17
0.60	14
0.300	10
0.212	8
0.150	6
0.063	3

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 80 17 3

Remarks:

#- not determined

Checked by

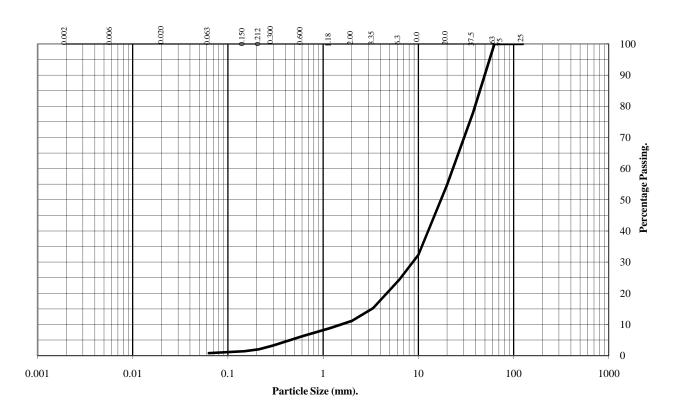
27/07/2010 Date

Anne

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH7 Type: B Depth (m): 4.50 to 5.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	78
20	55
10	32
6.3	24
3.35	15
2.00	11
1.18	9
0.60	6
0.300	3
0.212	2
0.150	1
0.063	1

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
~	
Cobbles	0
Gravel	89
Sand	10
Silt and Clay	1
-	

Remarks:

#- not determined

Checked by

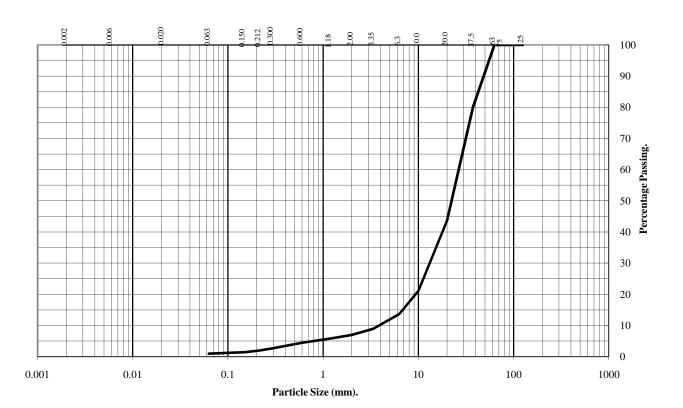
27/07/2010 Date

Annmovos

27/07/2010

Approved by

Date


Bosch, Miskin

Contract No.: 10482-070710
Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: BH7 Type: B Depth (m): 5.00 to 5.50

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	80
20	44
10	21
6.3	14
3.35	9
2.00	7
1.18	6
0.60	4
0.300	3
0.212	2
0.150	1
0.063	1

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
~	•
Cobbles	0
Gravel	93
Sand	6
Silt and Clay	1

Remarks:

#- not determined

Checked by

27/07/2010 Date

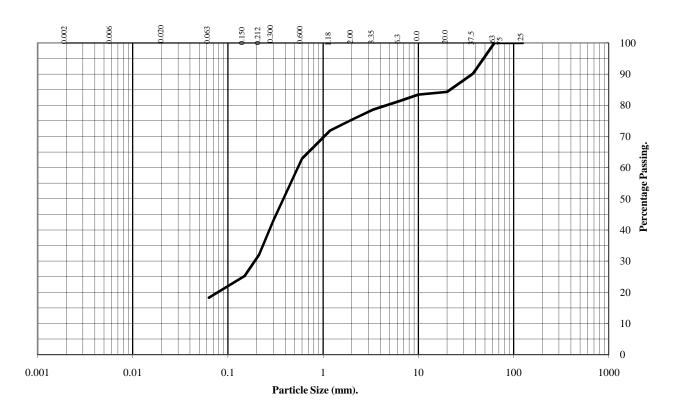
Annrow

27/07/2010

Approved by

Date

LABORATORY TESTING SERVICES LIMITED


Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

BS 1377 Part 2:1990. Wet Sieve, Clause 9.2

Hole Number: **BH7** Type: В Depth (m): 6.00

BS Test	Percentage
Sieve	Passing
125	100
75	100
63	100
37.5	90
20	84
10	83
6.3	81
3.35	79
2.00	75
1.18	72
0.60	63
0.300	43
0.212	32
0.150	25
0.063	18

Particle	Percentage
Diameter	Passing
0.02	#
0.006	#
0.002	#

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt and Clay	0 25 57 18

Remarks:

#- not determined

Checked by Date

27/07/2010

Approved by

27/07/2010

Date

Bosch, Miskin

Contract No.: 10482-070710 Client Ref No:

ERM has over 100 offices across the following countries worldwide

Argentina Malaysia Australia Mexico

Belgium The Netherlands

Brazil Peru Canada Poland Chile Portugal Puerto Rico China Colombia Russia Ecuador Singapore South Africa France Germany Spain Hong Kong Sweden Hungary Taiwan India Thailand Indonesia UK

Ireland United Arab Emirates

Italy US Japan Vietnam Kazakhstan Venezuela

Korea

ERM's Bristol Office

St Nicholas House 31-34 High Street Bristol BS1 2AW

T: 0117 315 8510 F: 0117 315 8511

www.erm.com

